=@ DR JEFF
CALIFORNIA IWISOFTWARE
STATE UNIVERSITY INDIE APPDEVELOPER

CSUN | =aiees cOMP 122

2016-2023
COMP122 Rev. 2-10-23

ASSEMBLY Programming/ISA
MIPS

By
Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

CSUN Bl sorrware
eSO ISA Index O i Drobman

2016-2023
COMP12

**MIPS History = slide 3
**MIPS (I, MIPS32) = slide 10
s Comparative -2 slide 70

CSUN

CALIFORNIA

MIPS

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

STATE UNIVERSITY ©JeffDr0bman
NORTHRIDGE 2016_2023
COMP122
MIPS Technologies, Inc.

MIPS Technologies

From Wikipedia, the free encyclopedia
(Redirected from MIPS Computer)

MIPS Technologies, Inc., formerly MIPS Computer Systems, Inc., was an American fabless semiconductor
design company that is most widely known for developing the MIPS architecture and a series of RISC CPU chips
based on it.['2] MIPS provides processor architectures and cores for digital home, networking, embedded, Internet
of things and mobile applications.®Il4]

MIPS Technologies, Inc. is owned!®! by Wave Computing, who acquired it from Tallwood MIPS Inc., a company
indirectly owned by Tallwood Venture Capital. Tallwood bought it on 2017-10-25 from Imagination Technologies, a
UK-based company best known for their PowerVR graphics processor family.®] Imagination Technologies had
previously bought MIPS after CEVA, Inc. pulled out of a bidding on 2013-02-08.

MII=S

TEEC T H:N Ok

| E
Logo

The former MIPS Technologies building in
Santa Clara

Type
Industry
Fate

Founded
Founder
Defunct
Headquarters

Key people
Products

Number of
employees

Parent

Subsidiary
RISC microprocessors

Acquired in 2018 by Wave
Computing

1984; 36 years ago

John L. Hennessy #

2013 #

Sunnyvale, California, U.S.
Sandeep Vij

Semiconductor intellectual
property

up to 50 (according to LinkedIn
in May 2018), previously 146
(September 2010)

Wave Computing #

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

@ DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023
COMP122

History |edit] Defunct 2013 #

Headquarters Sunnyvale, California, U.S.
MIPS Computer Systems Inc. was founded in 1984[718] by a group of researchers from Stanford University that — o e
included John L. Hennessy and Chris Rowen. These researchers had worked on a project called MIPS (for))

Products Semiconductor intellectual
Microprocessor without Interlocked Pipeline Stages), one of the projects that pioneered the RISC concept. Other property
principal founders were Skip Stritter, formerly a Motorola technologist, and John Moussouris, formerly of IBM.[®] Number of up to 50 (according to LinkedIn

- . L employees in May 2018), previously 146

The initial CEO was Vaemond Crane, formerly President and CEO of Computer Consoles Inc., who arrived in (September 2010)
February 1985 and departed in June 1989. He was replaced by Bob Miller, a former senior IBM and Data General Parent Wave Computing #
executive. Miller ran the company through its IPO and subsequent sale to Silicon Graphics. Website www.mips.com &

In 1988, MIPS Computer Systems designs were noticed by Silicon Graphics (SGI) and the company adopted the

MIPS architecture for its computers.['%) A year later, in December 1989, MIPS held its first IPO. That year, Digital Equipment Corporation (DEC) released a Unix

workstation based on the MIPS design.

After developing the R2000 and R3000 microprocessors, a management change brought along the larger dreams of being a computer vendor. The company
found itself unable to compete in the computer market against much larger companies and was struggling to support the costs of developing both the chips and
the systems (MIPS Magnum). To secure the supply of future generations of MIPS microprocessors (the 64-bit R4000), SGI acquired the company in 1992('"] for

$333 million!'2I3] and renamed it as MIPS Technologies Inc., a wholly owned subsidiary of SGI.['4]

During SGl's ownership of MIPS, the company introduced the R8000 in 1994 and the R10000!"%] in 1996 and a follow up the R12000 in 1997.['6] During this time,
two future microprocessors code-named The Beast and Capitan were in development; these were cancelled after SGI decided to migrate to the Itanium
architecture!'”! in 1998.1'21'8] As a result, MIPS was spun out as an intellectual property licensing company, offering licences to the MIPS architecture as well as

microprocessor core designs.

(G DR JEFF
CSUN IQI SOFTWARE
. MIPS O et Brobman
NORTHRIDGE

2016-2023
COMP122

Company timeline |edit)

Year = $

1981 Dr. John Hennessy at Stanford University founds and leads Stanford MIPS, a research program aimed at building a
microprocessor using RISC principles.

1984 MIPS Computer Systems, Inc. co-founded by Dr. John Hennessy, Skip Stritter, and Dr. John Moussouris(4?]

1986 First product ships: R2000 microprocessor, Unix workstation, and optimizing compilers

1988 R3000 microprocessor

1989 First IPO in November as MIPS Computer Systems with Bob Miller as CEO

1991 R4000 microprocessor

1992 SGI acquires MIPS Computer Systems. Transforms it into internal MIPS Group, and then incorporates and renames it
to MIPS Technologies, Inc. (a wholly owned subsidiary of SGI)

1994 R8000 microprocessor

1994 Sony PlayStation released, using an R3000 CPU with custom GTE coprocessor

1996 R10000 microprocessor; Nintendo 64 released, incorporating a cut down R4300 processor.

1998 Re-IPO as MIPS Technologies, Inc

1999 Sony PlayStation 2 released, using an R5300 cpu with custom vector coprocessors

2002 Acquires Algorithmics Ltd, a UK-based MIPS development hardware/software and consultancy company.

G Acqu.ire's Fir_st S_i-licon Soluti9ns (FS?), a Lake Oswego, Qregon company as a wholly owned subsidiary. FS2 .

6, 2005 specializes in silicon IP, design services and OCI (On-Chip Instrumentation) development tools for programming,
testing, debug and trace of embedded systems in SoC, SOPC, FPGA, ASSP and ASIC devices.

2007 MIPS Technologies acquires Portugal-based mixed-signal intellectual property company Chipidea

;(ext:;uary MIPS Joins Linux Foundation(44]

;ﬂ(:’gs' Chipidea is sold to Synopsys.

June 2009 | Android is ported to MIPS4S]

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

IDT’s MIPS R3000 Die

L F

Y

S

IS

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

First MIPS RISC CPUs

COMP122

32-bit

(I] o] T W

HONORARY MEMB

64-bit

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

asa DR JEFF
Q SOFTWARE
MIPS R10000 G

2016-2023

Instiiction
Cache

Grad
Unit

‘Address
- Quene
i

‘Register
[Rename

f DR JEFF
CSUN 24| soFTware
. |V| | PS oesrommoren
NORTHRIDGE

2016-2023
COMP122 Wikipedia MIPS

MIPS architecture

From Wikipedia, the free encyclopedia

Not to be confused with Millions of instructions per second, MIPS-X, or Stanford MIPS.

MIPS (Microprocessor without Interlocked Pipelined Stages)[ln is a reduced instruction set computer (RISC)
instruction set architecture (ISA)EIA-1141:19 developed by MIPS Computer Systems, now MIPS Technologies, based in the
United States.

There are multiple versions of MIPS: including MIPS |, 11, Ill, IV, and V; as well as five releases of MIPS32/64 (for 32- and
64-bit implementations, respectively). The early MIPS architectures were 32-bit only; 64-bit versions were developed
later. As of April 2017, the current version of MIPS is MIP832/63 Release 6.1516] MIPS32/64 primarily differs from MIPS
I~V by defining thel privileged kernel model System Control Coprocessor in addition to the user mode architecture.

Computer architecture courses in universities and technical schools often study the MIPS architecture.[”] The
architecture greatly influenced later RISC architectures such as Alpha.

As of April 2017, MIPS processors are used in embedded systems such as residential gateways and routers. Originally,
MIPS was designed for general-purpose computing. During the 1980s and 1990s, MIPS processors for personal,
workstation, and server computers were used by many companies such as Digital Equipment Corporation, MIPS
Computer Systems, NEC, Pyramid Technology, SiCortex, Siemens Nixdorf, Silicon Graphics, and Tandem Computers.
Historically, video game consoles such as the Nintendo 64, Sony PlayStation, PlayStation 2, and PlayStation Portable
used MIPS processors. MIPS processors also used to be popular in supercomputers during the 1990s, but all such
systems have dropped off the TOP500 list. These uses were complemented by embedded applications at first, but during
the 1990s, MIPS became a major presence in the embedded processor market, and by the 2000s, most MIPS

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ISA

MIPS

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

6 DR JEFF
CSUN) 254 soFTwaRE
CALIFORNIA INDIE APP DEVELOPER
STATE UNIVERSITY IVI I P S I SA S © Jeff Drobman
NORTHRIDGE

2016-2023

cOMp122 Wikipedia MIPS
1 MIPS |
1.1 Reqgisters 2 MIPS Il R6000 1989 8 Application-specific extensions
1.2 Instruction formats 3 MIPS Il | R4000 1991 64-bit 8.1 MIPS MCU
1.3 CPU instructions 4 MIPS IV 8.2 MIPS16
1.3.1 Loads and stores 5 MIPS V| 8.2.1 MIPS16e
1.3.2 ALU slmipsazAeses 1999 8.2.2 MIPS16e2
1.3.3 Shifts 6.1 MIPS32/MIPS64 Release 1 shad CLmlRas
1.3.4 Multiplication and division 6.2 MIPS32/MIPS64 Release 3 8.4 MIPS SIMD architecture
L P e 6.3 MIPS32/MIPS64 Release 5 o> MIPS virtualization
1.3.6 Bxoeption 6.4 MIPS32/MIPS64 Release 6 AR ST
1.4 FPU instructions 7 microMIPS 8.7 SmartMIPS
1.4.1 Arithmetic .
Extensions
1.4.2 Data transfer / % Privilege states
1.4.3 Branch Base ISA > Kernel
1985 » Supervisor
» User

R2000->R3000 32-bit
MIPS | R2000 | R3000

MIPS Il R6000

Classic
Processors

MIPS Il R4000 (R4400) - R4200 (R4300i) { R4600 [R4700)

MIPS IV R5000 - R8000 - R10000 (R12000 - R12000A + R14000 - R14000A - R16000 - R16000A - R18000)

[r— DR JEFF

CSUN IQI SOFTWARE
STATE NIy EReITY © Jeff Drobman
MIPS Cores

COMP122

MIPS 32-Bit Processor Core Families

MIPS Core Evolution Multi-core
Multi-threaded

Multi-threaded (34K), mm (1-4 cores)

1004K Coherence Management
| 1.3+ GMz ped, 2 GHz typical (40nm)
Multi-threading 34K Super Scalar
' Superscalar; 15-stage pipeline
DSP extensions 24KE —— 74K 1.1 GHz in 65nm (prod’ n frequency)
' 1.6+ Ghz prod, > 2.75 GHz typical (40nm)
8 5500 DMIPS @ 2.75 GMz
> 900 MHz prod (65nm) - 24K
microMIPS
S microMIPS, MIP532
—_— -
Cache, MMU 4AKE Mi14aKe e st
‘ AHB, advanced debug
Security 4AKSd
-
* & :
3 ’ - ¢
processors and °°o o o °g° : tPQP & °,+ & Rt
o s A » A » S
cores <& & o $Q# &> & & & & ¥ 9 A "‘\
1981 1984 1985 1988 1990 1991 1994 1995 1998 2001 2002 2003 2004 2005 2007 2009
MIPS design MIPS MIPS Floating ovP
begins Computer open to Point Sim
System third-party Announced
founded vendors; " AsnsEnosd
SPIM MIPS
Simulator for H H
o Timeline

NAAIPPSS 1 giagram is in large part thanks to the support of MIPS Technologies.

CSUN , Bl sorrware
ChTomy MIPS ISA’s & Mo d u | es L ot

2016-2023
COMP122

Architectures

Based on a heritage built over more than three decades of constant innovation, the MIPS architecture is the
industry’s most efficient RISC architecture, delivering the best performance and lowest power consumption
in a given silicon area.

MIPS SIMD architecture module
MIPS DSP architecture module
MIPS MCU architecture module
MIPS16e architecture module

nanoMIPS Architecture

MIPS32 Instruction Set Architecture (ISA)
MIPS64 Architecture ISA

microMIPS ISA

MIPS Multi-Threading architecture module
MIPS Virtualization architecture module

CSUN

DR JEFF

. SOFTWARE
INDIEAPPDEVELOPER
R s MIPS Core Details O Erabrman
NORTHRIDGE 2016‘2023
Microcontrollers 4Kc/dKEc ATI/AMD/Broadcom Xilleon
(Embedded Device) MIPS32
Loongson 1 Series (LS1A0300 < LS1B + LS1C300 - LS1C101 - LS1D + LS1G + LS1H)
compatible
4Kc/4KEc Qualcomm Atheros (AR2313 - AR2318) - MediaTek (RT2880) - Texas Instruments/Infineon/Lantiq (AR7) + Lantiq (AMAZON)
5Kc Marvell (88E6318 "Link Street")
2AKC/AKE Qualcomm Atheros (AR7240 - AR7161 - AR9132 - AR9331) - MediaTek (RT3050 - RT3052 - RT3350 - RT5350 - RT6856 - MT7620) - Lantiq
e (DANUBE - VINAX)
34Kc Lantiq (AR188 - VRX288 - GRX388) + Ikanos (Fusiv Vx175/173 « Fusiv Vx180 + Fusiv Vx185/183)
74Kc Qualcomm Atheros (AR9344 - QCA9558) - MediaTek (RT3662 - RT3883) - Broadcom (BCM4706)
Networking
1004Kc MediaTek (MT7621)
1074Kc Realtek (RTL8198C)
i Broadcom (various) + Cavium (various) + Alichemy Semiconductor (Alchemy) + RMI Corporation (XLR)
compatible Y Yy P
MIPS64
Broadcom (various) « Cavium (Octeon
compatible () RERR \Octeon)
Gaming various PlayStation 1 MIPS R3000A-compatible « Nintendo 64 NEC VR4300 - PlayStation Portable R4000-based + PlayStation 2 Emotion Engine
MIPS64)
Supercomputer Loongson-based systems (LS2F/LS2F1000 - LS3A1000 - LS3B1000) - SiCortex
compatible
MIPS64
S Loongson 1 Series (LS1E0300/LS1E1000)
compatible
Aerospace
MIPS32

compatible

Loongson 1 Series (LS1E04 - LS1F04/LS1F0300 + LS1J)

. \ DR JEFF
CSUN 25| soFTwWARE
mCuroNs MIP S 3) | S A SRET
NORTHRIDGE 2016-2023
COMP122
MIPS32 Instruction Set - MIPS [Page v @

The MIPS32 instruction set is an instruction set standard published in 1999 that was promulgated by MIPS
Technologies after its demerger from Silicon Graphics in 1998. The MIPS32 instruction set was developed along side the
MIPS64 Instruction Set which includes 64-bit instructions. The MIP32 standard included coprocessor 0 control
instructions for the first time. Today, the MIP32 instruction set is the most common MIPS instruction set, compatible with
most CPUs. Due to its relative simply, the MIP32 instruction set is also the most common instruction set thought in
computer architecture university courses.

The latest MIPS32 revision is revision 5, which added a set of new memory-efficient operations for large memory footprint
MIPS

applications. :
Designer MIPS Technologies, Imagination

SPECIALZ, COP2, LWC2, SWC2,

MIPS32 Extensions: Technologies
R Bits 64-bit (32 — 64)
Designer: MIPS Technologies, Inc. Application- Introduced 1985; 34 years ago
: : specific MIPS16e, MCU, SmartMIPS Version MIPS32/64 Release 6 (2014)
Bits: 32-bits]
extension: Design RISC
|Itl0dlced2 1999 ulllti-“i' TyPe Reg|ster-Reg|ster
MIPS-3D
Version: Revision 5.3 extension: Encoding Fixed
- Branching Compare and branch
F— egisters
Design: RISC . Endianness Bi
General
Type: Register-Register 32 Page size 4 KB
i Extensions MDMX, MIPS-3D
o Al Floating point: 32 Open Yes, and royalty freel')
Branching: Condition Register Special) Registers
PRI General 32
Endianness: Bi-endian P

purpose

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

\ DR JEFF
25| soFTwaRE

MIPS |- Base (R2000) Org = =i

2016-2023

Hennessy & Patterson MIPS

Figure 7.10.71: MIPS R2000 CPU and FPU (COD
Figure A.10.1).

FPU

1111 !
—| Memory |
HHHHHH HH
CPU
| |
CPU Coprocessor 1 (FPU)
Registers Registers
30 $0
[$31 —‘ $31
Arithmetic Multiply
unit divide
I—l—l Arithmetic
‘ Lo Hi unit

BadVAddr
Status

Coprocessor 0 (traps and memory)
Registers

1 Cause
\ EPC

CSUN : E)sorrware
Instruction Formats

2016-2023
COMP122 Wikipedia MIPS

The following are the three formats used for the core instruction set:

Type -31- format (bits) -0-
R opcode (6) rs(5) rt(5) | rd(5) @ shamt(5) | funct (6)
| opcode (6) | rs(5) rt(5) immediate (16)

J | opcode (6) I address (26)

Q “shamt” ::= shift amount (5 bits)
O “funct” ::= function (opcode extension — 6 bits)

CSUN : : 858 soFrware
Directives

2016-2023
COMP122

Hennessy & Patterson MIPS

Labels:
I
l _data «7 Memory segments
item: .word
.text
.globl main # Must be global
main: lw $t0, item

» Special chars in “Strings”

* newline \n
» tab\n t
= quote \"

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

| - DR JEFF
. . IQI SOFTWARE
Directives o

2016-2023

Hennessy & Patterson MIPS

Table 7.10.1: MIPS assembler directives supported by SPIM.

Directive

.align n

.ascii str
.asciiz str

.byte bl,..., bn

.data <addr>

.double dl,..., dn

.extern sym size

Definition

Align the next datum on a 2" byte boundary. For example, .align 2 aligns the next value on a word
boundary. .align O turns off automatic alignment of .half, .word, . float, and .double directives
until the next .data or .kdata directive.

Store the string str in memory, but do not null-terminate it.
Store the string str in memory and null-terminate it.
Store the n values in successive bytes of memory.

Subsequent items are stored in the data segment. If the optional argument addr is present, subsequent
items are stored starting at address addr.

Store the n floating-point double precision numbers in successive memory locations.

Declare that the datum stored at sym is size bytes large and is a global label. This directive enables the
assembler to store the datum in a portion of the data segment that is efficiently accessed via register

Sgp.

CSUN : : B8 soFrware
Directives o i

COMP122

Hennessy & Patterson MIPS

Declare that the datum stored at sym is size bytes large and is a global label. This directive enables the
.extern sym size assembler to store the datum in a portion of the data segment that is efficiently accessed via register

$gp.

.float f1,..., fn | Store the n floating-point single precision numbers in successive memory locations.
.globl sym Declare that label sym is global and can be referenced from other files.
whalf hl. ..., hn Store the n 16-bit quantities in successive memory halfwords.

Subsequent data items are stored in the kernel data segment. If the optional argument addr is present,

.kdata <addr> : :
REELSSEET subsequent items are stored starting at address addr.

Subsequent items are put in the kernel text segment. In SPIM, these items may only be instructions or
.ktext <addr> words (see the .word directive below). If the optional argument addr is present, subsequent items are
stored starting at address addr.

The first directive prevents SPIM from complaining about subsequent instructions that use register $at.
The second directive re-enables the warning. Since pseudoinstructions expand into code that uses
register $at, programmers must be very careful about leaving values in this register.

.set noat and
.set at

.space n Allocates n bytes of space in the current segment (which must be the data segment in SPIM).

Subsequent items are put in the user text segment. In SPIM, these items may only be instructions or
.text <addr> words (see the .word directive below). If the optional argument addr is present, subsequent items are
stored starting at address adar.

.word wl,..., wn Store the n 32-bit quantities in successive memory words.

&9 DR JEFF
CSUN - Edjsorrwane
GP Registers 8o Brobman

2016-2023
COMP122

Register use convention: /— Hennessy & Patterson —

The calling convention described in this section is the one used by the gcc compiler. The native MIPS compiler uses a more complex
convention that is slightly faster.

The MIPS CPU contains 32 general-purpose registers that are numbered 0—31. Register $0 always contains the hardwired value 0.

= Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and operating system and should not be used by user
programs or compilers.

= Registers $a0-$a3 (4—7) are used to pass the first four arguments to routines (remaining arguments are passed on the stack).
Registers $v0 and $v1 (2, 3) are used to return values from functions.

= Registers $t0-$t9 (8—15, 24, 25) are caller-saved registers that are used to hold temporary quantities that need not be preserved
across calls (see COD Section 2.8 (Supporting Procedures in Computer Hardware)).

= Registers $s0-$s7 (16—23) are callee-saved registers that hold long-lived values that should be preserved across calls.

= Register $gp (28) is a global pointer that points to the middle of a 64K block of memory in the static data segment.

= Register $sp (29) is the stack pointer, which points to the last location on the stack. Register $£p (30) is the frame pointer. The jal
instruction writes register $ra (31), the return address from a procedure call. These two registers are explain in COD Section A.7

Excepti d int ts)
(Exceptions and interrupts) g
Reglster number Usage call?

* Sa(O 3) args rszero The constant value O
¢ Sat, Sk(0:1) reserve syo-sv1 | 2-3 Values for results and expression evaluation no
s Sv(0:1) values ' $a0-$a3 4-7 Arguments no |
** St(0-9) temp | $t0-$t7 8-15 Temporaries no
o< SS(O7) saved | $s0-$s7 16-23 Saved yes
KX S gp g lobal ptr | $t8-$19 24-25 More temF)oranes no
& SS stack ptr | $gp 28 Global pc?lnter yes
P p $sp 29 Stack pointer yes
% Sfp frame ptr $fp 30 Frame pointer yes
% Sra return addr | $ra 31 Return address yes

CSUN .) sorrwars
pCuroma GP Re o] sters L ot

2016-2023
COMP122

Register use convention: /— Hennessy & Patterson —
Figure 2.8.1: What is and what is not preserved across a procedure call (COD Figure 2.11).

If the software relies on the frame pointer register or on the global pointer register, discussed in the following sub:
preserved.

Not prosrved

Saved registers: $s0-$s7/ Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-%$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

» Sa(0:3) args

¢ Sat, Sk(0:1) reserved
s Sv(0:1) values

s St(0-9) temp

% Ss(0:7) saved

s Sgp global ptr

s Ssp stack ptr

s Sfp frame ptr

¢ Sra return addr

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

CSUN

CALIFORNIA

MARS

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016_2023
COMP122)
Registers
& Mars Coproc1 Coproc 0
PO @ MARS 4.5 Name Number Value
File Edit Run Settings Tools Help 5Zero 0 0x00000000
T R !ﬁ“ 1 0x00000000
| g 2 QO @ 2 0x00000000
‘;ij. - 0101 ‘ : ﬁ 0 * ' . ' : x ‘ 111 . ‘ ‘ @ sv1 3 0x00000000
4 0x00000000
: 1 5 0x00000000
Registers Coproc 1 ::2 6 o:omoooo
a3 7 0x00000000
Name Number Value 8 0x00000000
$8 (vaddr) 8 0x00000000 , tes - ettt
$12 (status) 12 0x00007f11 $t3 11 0x00000000
$13 (cause) 13 0x00000000 ;:; - o o000
$14 (epc) 14 0x00000000 $t6 14 0x00000000
_;H 15 0x00000000
. $s0 16 0x00000000
Registers $s1 17 0x00000000
$s2 18 0x00000000
Name Float [|ss3 19 0x00000000
20000000 $s4 20 0x00000000
$70 0x $s5 21 0x00000000
$F1 0x00000000 $6 2 0x00000000
$f2 Ox00000000 $s7 23 0x00000000
$f3 0x00000000 | o PPessenn
$f4 0x00000000 26 0x00000000
$f5 0x00000000 g; gigmgm
$76 0x00000000 29 ox7fffeffc
$F7 0x00000000 30 0x00000000
$8 0x00000000 3 M
$f9 Ox00000000 0x00000000
$710 0x00000000 £x0660060

CSUN B sorrware
. M| PS Assem b Iy Branc h es ©ef Drobman

COMP122 P&H Ch2

Example 2.10.2: Branching far away.

Given a branch on register $s0 being equal to register $s1,

beq $s0, $s1, L1 Cond|JUMP

replace it by a pair of instructiong that offers a much greater branching distance.

Answer

These instructions replace the short-§ddress conditional branch:
bne $s0, $s1, L2 SKIP (cond’l)
] L1

2"

DR JEFF

¢ %JSOFTWARE
~MIPS Assembly: Address Modes e

COMP122 P&H Ch2

1. Immediate addressing

| op | rs | rt Immediate

2. Register addressing

R op|rs|rt|rd].../funct Registers
L Register

3. Base addressing offset

| op|rs | rt Address 1 Memory
Register base Jl : - Word
}

[

4. PC-relative addressing

| op | rs l rt Address Memory
cond

PC Word
|

5. Pseudodirect addressing

.l op Address Memory
: |

4msb PC 30 bits Word
| } |

@' DR JEFF
E SOFTWARE

R Address Formats & oo
2016-2023

NORTHRIDGE

COMP122 Patterson & Hennessy
 Format | Addresscomputstion
(register) (Sat) lcontents of register
imm +4 immediate

imm (register) +4 (Sat) ! immediate + contents of register
label \ address of label
label £ imm Label +4 address of label + or - immediate
label £ imm (register) | address of label + or - (immediate + contents of register)

Label +4 (Sat)

CSUN B sorrware
e Memory Segment Model e
COMP122

Patterson & Hennessy

Figure 2.8.3: The MIPS memory allocation for program and data (COD Figure 2.13).

Ffff £Fff
T Kernel & 1/0 space
8000 0000
Global pointer: The register that is reserved to point to the static area. t

\ Dynamic data
Data

$gp— 1000 8000, |™ Static data
1000 0000,

Text Code

pc— 0040 0000,
0

Reserved

CSUN B soFrware
Memory Segments o oo

2016-2023
COMP122

FFFFFFFF
Ire 7.2.1: Object file (COD Figure A.2.1).
A UNIX assembler produces an object file with six distinct sections.
Stack Display
Buffer
! Object file Text Data Relocation | Symbol | Debugging
header segment segment information table information
Currently
Unused
\ Printer
l Buffer
Heap
Data
Text
00000000

Typical memory layout for a program with a 32-bit address space.

DR JEFF

CSUN L

SOFTWARE
. |V| A RS oesrommoren
NORTHRIDGE 2016—2023
COMP122
Memory Map

e e MIPS Memory Configuration

oxffffffff memory map limit address
oxffffffff kernel space high address
oxffffoeee |MMIO base address
oxfffeffff kernel data segment limit address
0x90000000 .kdata base address

ox8ffffffc kernel text limit address

0x80000180 |exception handler address

0x80000000 kernel space base address

-rConfiguration 0x80000000 |.ktext base addres
© Default Ox7fffffff user space high address

Compact, Data at Address 0 | px7fffffff data segment limit address
Compact, Text at Address 0 | o 7¢rffffc

stack base address

ox7fffeffc stack pointer $sp

0x10040000 stack limit address
0x10040000 |heap base address '
0x10010000 m
0x10008000 global pointer Sgp

0x10000000 data segment base address
0x10000000 .extern base address

oxoffffffc text limit address
0x00400000 |.text base address

CSUN 2 soFrware
MIPS Assembly

COMP122
MIPS Lab1l —
® O MARS 4.5 Help
MARS License Bugs/Comments Acknowledgements Instruction Set Song
Operand Key for Example Instructions
label, target any textual label
$t1, $t2, $t3 any integer register
$f2, $f4, $f6 even-numbered floating point register
$70, $71, $13 any floating point register

Licia e Extended (pseudo) Instructions Directives Syscalls Exceptions Macros

'sltiu $t1,$t2,-100 Set less than immediate unsigned : If $t2 is less than sign-extended 16-bit imme
'sltu $t1,$t2,$t3 Set less than unsigned : If $t2 is less than $t3 using unsigned comparision, then
jsqrt.d $f2,574 Square root double precision : Set $f2 to double-precision floating point square
sqrt.s $f0,$f1 Square root single precision : Set $f@ to single-precision floating point square
'sra $t1,$t2,10 Shift right arithmetic : Set $tl1 to result of sign-extended shifting $t2 right by
'srav $t1,$t2,$t3 Shift right arithmetic variable : Set $tl to result of sign-extended shifting $t2
}srl $t1,$t2,10 Shift right logical : Set $tl to result of shifting $t2 right by number of bits s
}srlv $t1,$t2,$t3 Shift right logical variable : Set $tl to result of shifting $t2 right by number
'sub $t1,$t2,$t3 Subtraction with overflow : set $t1 to ($t2 minus $t3)

sub.d $f2,$f4,$6 Floating point subtraction double precision : Set $f2 to double-precision floatin
jsub.s $70,$71,$13 Floating point subtraction single precision : Set $f@ to single-precision floatin
'subu $t1,$t2,5t3 Subtraction unsigned without overflow : set $tl to ($t2 minus $t3), no overflow
'sw $t1,-100($t2) Store word : Store contents of $tl into effective memory word address

jswcl $71,-100($t2) Store word from Coprocesor 1 (FPU) : Store 32 bit value in $fl to effective memor
swl $t1,-100($t2) Store word left : Store high-order 1 to 4 bytes of $tl into memory, starting with
}swr $t1,-100($t2) Store word right : Store low-order 1 to 4 bytes of $tl1 into memory, starting with
syscall Issue a system call : Execute the system call specified by value in $v@

teq $t1,$t2 Trap if equal : Trap if $tl is equal to $t2

‘teqi $t1,-100 Trap if equal to immediate : Trap if $tl is equal to sign-extended 16 bit immedia
}fma £t1 &t2 Tran if areater nr enual * Tran if &€+1 i< areater than nr enual tn €t2

|

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS Assembly

&% DR JEFF
E SOFTWARE

© Jeff Drobman
2016-2023

Hennessy & Patterson —

MIPS machine language
add R 0 18 19 17 0 32 add $s51,3s2,%s3
sub R 0 18 19 17 0 34 sub $s1,%s52,%s3
addi I 8 18 17 100 addi $s1,$s52,100
Iw | 35 18 17 100 iw $s1,100(8s2)
SW | 43 18 17 100 sw $s51,100(%$s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format R op rs rt rd shamt \ funct Arithmetic instruction format
I-format l op rs r address \ Data transfer format
\
offset
add $t0 $s1 $s2
add $s1 $s2 $t0 unused add
0 17 18 8 0 32
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

CSUN

CALIFORNIA

@ DR JEFF
IQISOFTWARE

INDIE APPDEVELOPER

MIPS | ISA
NORTHRIDGE 2016-2023
COMP122 CPU Wikipedia ———
ALU Instruction name Mnemonic Format Encoding

Add ADD R 010 rs rt rd 010 3240
Add Unsigned ADDU R 019 rs rt rd 010 331p
Subtract SuB R (V) rs rt rd 019 3449
Subtract Unsigned SuBU R (V) rs rt rd 010 3510
And AND R 010 rs rt rd 010 3610
Or OR R 010 rs rt rd 010 3710
Exclusive Or XOR R 019 rs rt rd 010 3840
Nor NOR R 019 rs rt rd 010 39419
Set on Less Than SLT R 040 rs rt rd () 4240
Set on Less Than Unsigned SLTU R 010 rs rt rd 010 4349
Add Immediate ADDI | 810 rs rd immediate
Add Immediate Unsigned ADDIU I 940 $s $d immediate
Set on Less Than Immediate SLTI | 1049 $s $d immediate
Set on Less Than Immediate Unsigned | SLTIU | 1140 $s $d immediate
And Immediate ANDI I 1249 $s $d immediate
Or Immediate ORI I 134p $s $d immediate
Exclusive Or Immediate XORI | 1449 $s $d immediate
Load Upper Immediate LUI I 1540 010 $d immediate

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS32 ISA

Arithmetic instructions

Mnemonic
ADD
ADDI
ADDIU
ADDU
CLO
CLZ
DIV
DIVU
MADDU
MSUB
MSUBU
MUL
MULT
MULTU

12

Description
Add Word
Add Immediate Word
Add Immediate Unsigned Word
Add Unsigned Word
Count Leading Ones in Word
Count Leading Zeros in Word
Divide Word
Divide Unsigned Word
Multiply and Add Word to Hi, Lo X*Y +A
Multiply and Add Unsigned Word to Hi, Lo
Multiply and Subtract Word to Hi, Lo
Multiply and Subtract Unsigned Word to Hi, Lo
Multiply Word to GPR
Multiply Word
Multiply Unsigned Word

¥m DR JEFF
25| soFTwaRE

© Jeff Drobman
2016-2023

Hennessy & Patterson —

Logical instruction

Mnemonic
AND

ANDI

LUI

NOR

OR

ORI

XOR

XORI

SEB
SEH
SLT
SLTI
SLTIU
SLTU
SUB
SUBU

-~
i

Description =%
And
And Immediate
Load Upper Immediate
Not Or
Or
Or Immediate
Exclusive Or

Exclusive Or Immediate

Sign-Extend Byte

Sign-Extend Halftword

Set on Less Than

Set on Less Than Immediate

Set on Less Than Immediate Unsigned
Set on Less Than Unsigned

Subtract Word

Subtract Unsigned Word

‘ Y DR JEFF
CSUN 25| soFTwWARE
. |V| | P S | | S A Seesesmi
NORTHRIDGE
CPU

2016-2023
COMP122 Wikipedia
Shift |
Instruction name Mnemonic Format Encoding
Shift Left Logical SLL R 010 010 rt rd sa 010
Shift Right Logical SRL R 010 019 rt rd sa 210
Shift Right Arithmetic SRA R 010 010 rt rd sa 310
Shift Left Logical Variable SLLV R 010 rs rt rd 010 440
Shift Right Logical Variable | SRLV R 010 rs nt rd 010 610
| Shift Right Arithmetic Variable | SRAV R 019 rs rt rd 010 710
Mult Instruction name Mnemonic Format Encoding
Div. pove from Hi MFHI R 010 010 010 rd 010 1649
Move to HI MTHI R 010 rs 040 040 010 17410
Move from LO MFLO R 010 010 010 rd 010 1849
Move to LO MTLO R () rs 040 040 010 1940
Multiply MULT R 010 rs rt 010 010 2449
Multiply Unsigned | MULTU R 010 rs rt 040 010 2549
Divide DIV R 010 rs rt 010 010 2610
Divide Unsigned | DIVU R 010 rs rt 010 010 2740

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Move instructions

Mnemonic Description s
MFHI Move From HI Register

MFLO Move From LO Register

MOVF Move Conditional on Floating Point False
MOVN Move Conditional on Not Zero

MOVT Move Conditional on Floating Point True

MOVZ Move Conditional on Zero

MTHI Move To HI Register

MTLO Move To LO Register

RDHWR Read Hardware Register

¥m DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

Hennessy & Patterson —

Shift instructions

Mnemonic
ROTR

ROTRV

SLL

SLLV

SRA

SRAV

SRL

SRLV

12

Description
Rotate Word Right
Rotate Word Right Variable
Shift Word Left Logical
Shift Word Left Logical Variable
Shift Word Right Arithmetic
Shift Word Right Arithmetic Variable
Shift Word Right Logical
Shift Word Right Logical Variable

CSUN . : : D) sorrware
. S h |ft & B |t L0g|c Ot Drarer

2016-2023
COMP122

Hennessy & Patterson —

Figure 2.6.1: C and Java logical operators and
their corresponding MIPS instructions (COD
Figure 2.8).

MIPS implements NOT using a NOR with one operand being zero.

cogca aperaons wirs mircton

Shift left

Shift ngnt 53> Sr
Bit-y-bit AND ' % | i ' and. andi
Bit-by-bit OR - f . | ‘ or, ori

Bltbyblt NOT . ‘ | nor

‘ Y DR JEFF
CSUN 25| soFTwWARE
. |V| | P S | | S A Seesesmi
NORTHRIDGE
CPU

2016-2023
COMP122

Wikipedia
LOAD
Instruction name Mnemonic Format Encoding

Load Byte LB I 3240 rs rt offset
Load Halfword LH I 3310 rs rt offset
Load Word Left LWL I 344 rs rt offset
Load Word LW I 3510 rs rt offset
Load Byte Unsigned LBU I 3640 rs rt offset
Load Halfword Unsigned | LHU I 3710 rs rt offset
Load Word Right LWR I 3810 rs rt offset
Store Byte STORE SB I 4049 rs rt offset
Store Halfword SH I 4149 rs rt offset
Store Word Left SWL I 4240 rs rt offset
Store Word SW I 4349 rs rt offset
Store Word Right SWR I 4649 rs rt offset

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

LOAD
LHU Load Halfword Unsigned
LHUE Load Halfword Unsigned EVA
LL Load ord
LLE Load|Linked Word-EVA
Lw Load Word
LWE Load Word EVA
LWL Load Word Left
LWLE Load Word Left EVA
LWR Load Word Right
LWRE Load Word Right EVA
PREF Prefetch
PREFE Prefetch-EVA

MIPS32 ISA

DR JEFF
25| soFTwaRE

© Jeff Drobman
2016-2023

STORE

SB
SBE
SC
SCE
SH
SHE
SW
SWE
SWL
SWLE
SWR
SWRE
SYNC
SYNCI

Hennessy & Patterson —

Store Byte

Store Byte EVA

Storq Conditional|Word
StorWord EVA
Store Halfword

Store Halfword EVA

Store Word

Store Word EVA

Store Word Left

Store Word Left EVA

Store Word Right
Store Word Right EVA

Synchronize Shared Memory

» Multiprocessing extensions

Synchronize Caches to Make Instruction Writes Effective

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@3 DR JEFF
SOFTWARE

MIPS I ISA
CPU

2016-2023

Jump + Branch

Wikipedia ———

Instruction name Mnemonic Format Encoding

Jump Register JR R 010 rs 010 010 010 810
Jump and Link Register JALR R 010 rs 010 rd 010 940
Branch on Less Than Zero BLTZ | 110 rs 010 offset

Branch on Greater Than or Equal to Zero BGEZ | 110 rs 110 offset

Branch on Less Than Zero and Link BLTZAL | 110 rs 16 offset

Branch on Greater Than or Equal to Zero and Link | BGEZAL | 140 rs 17 offset

Jump J J 210 instr_index

Jump and Link JAL J 310 instr_index

Branch on Equal BEQ | 440 rs rt offset

Branch on Not Equal BNE | 510 rs rt offset

Branch on Less Than or Equal to Zero BLEZ | 610 rs 010 offset

Branch on Greater Than Zero BGTZ | 710 rs 010 offset

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

¥m DR JEFF
25| soFTwaRE

2016-2023

MIP S 3) | S A e
CPU

Branch instructions

Hennessy & Patterson —

Note that all thnches have been obsoleted; they will be removed in future revisions of the MIPS32 architecture.
Jump instructions

instructions.

Mnemonic =
B

BAL
BEQ
BGEZ
BGEZAL
BGTZ
BLEZ
BLTZ
BLTZAL
BNE

@

Description
Unconditional Branch
Branch and Link
Branch on Equal
Branch on Greater Than or Equal to Zero
Branch on Greater Than or Equal to Zero and Link
Branch on Greater Than Zero
Branch on Less Than or Equal to Zero
Branch on Less Than Zero
Branch on Less Than Zero and Link

Branch on Not Equal

Branch on Equa
Branch on Greater Than or Equal to Zero and LinK Likely

Branch on Greater Than or Equal to ZerJ Likely

Branch on Greater Than Zerg Likely

Branch on Less Than or Equal to Zero Likely
Branch on Less Than Zero and Link Likely
Branch on Less Than Zero Likely

Branch on Not Equal Likely

-~

Mnemonic +
J

JAL

JALR

JALR.HB

JALX

JR

JR.HB

“»

Description
Jump
Jump and Link
Jump and Link Register
Jump and Link Register with Hazard Barrier
Jump and Link Exchange
Jump Register

Jump Register with Hazard Barrier

Control instructions

Mnemonic =

EHB

NOP

PAUSE

SSNOP

Description *

Execution Hazard
Barrier

No Operation

Wait for LLBit to
Clear

Superscalar No
Operation

[: DR JEFF
CSUN Q SOFTWARE
. |V| | P S | | S A Seesesmi
CP1

2016-2023
COMP122 Wikipedia
| FP Name Instruction syntax Meaning opcode rs rt rd sham funct
hFIoating-Point Add add.s $x,$y,$z $x = $y + $z 1740 010 | $2 | Sy | $x 010
Floating-Point Subtract sub.s $x,$y,$z $x = $y - $z 1740 010 | $z | Sy | $x 110
Floating-Point Multiply mul.s $x,$y,$z $x = §y * $z 1740 010 $z Sy | $x 210
Floating-Point Divide div.s $x,$y,$z $x = §y / $z 1740 010 | $z | Sy | $x 310
Floating-Point Add add.d $x,$y,$z $x = $y + $z 1740 110 | $2 | Sy | $x ()
Floating-Point Subtract sub.d $x,$y,$z $x = $y - $z 1740 110 | $2 | Sy | $x 110
Floating-Point Multiply mul.d $x,$y,$z $x = $y * $z 1740 110 | $2 | Sy | $x 240
Floating-Point Divide div.d $x,$y,$z $x = $y / $z 1740 110 | $z | Sy | $x 310
Floating-Point Compare (eq,ne,lt,le,gt,ge) c.1t.s $£2,$f4 cond = ($f2 < $£4)
Floating-Point Compare (eq,ne,lt,le,gt,ge) | c-1t.d $£2,5f4 cond = ($£2 < $£4)
System
Instruction name Mnemonic Format Encoding
System Call SYSCALL ? 010 Code 1249

Breakpoint BREAK ? 010 Code 1340

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS | ISA

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Data transfer | edit]
Instruction
Name Meaning Format opcode funct
syntax

Load word lwcZ $x,CONST ($y) Coprocessor[2).DataRegister[$x] = |
coprocessor d Memory([$y + CONST]
Store word =

swcZ $x,CONST ($y) Ty AT 3 COT] : |
coprocessor Coprocessor|(2).DataRegister($x)
Branch | edit]

Name Instruction syntax Meaning Format opcode funct |
if (cond)

Branch on FP True |bclt 100

goto PC+4+100;

if (!cond)

Branch on FP False | bclf 100
? ? goto PC+4+100;

Wikipedia ———

Notes/Encoding

Loads the 4 byte word stored from: MEM[$y+CONST] into a
Coprocessor data register. Sign extension.

Stores the 4 byte word held by a Coprocessor data register
into: MEM[$y+CONST]. Sign extension.

Notes/Encoding

PC relative branch if FP condition

PC relative branch if not condition

— FF
CSUN B sorrware
mSuromIn \Yi | P S 3 2 | S A b o

2016-2023
COMP122
FPU instructions

Coprocessor 1 ————— Hennessy & Patterson =

FPU . .
Branch instructions

Arithmetic instructions

Mnemonic Description s

Mnemonic ¢ Description s
F BC1F Branch on FP False

ABS.fmt Floating Point Absolute Value

BC1T Branch on FP True
ADD.fmt Floating Point Add)

BOHL Branch on FP False Likely
DIV.fmt Floating Point Divide

BCITL Branch on FP True Likely

MADD.fmt Floating Point Multiply Add

MSUB.fmt Floating Point Multiply Subtract

MUL.fmt Floating Point Multiply

NEG.fmt Floating Point Negate

NMADD.fmt Floating Point Negative Multiply Add
NMSUB.fmt Floating Point Negative Multiply Subtract
RECIP.fmt Reciprocal Approximation

RSQRT.fmt Reciprocal Square Root Approximation
SQRT.fmt Floating Point Square Root

SUB.fmt Floating Point Subtract

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER
MIPS32 ISA

COMP122

Memory control instructions FPA
Mnemonic Description s
LDC1 Load Doubleword to Floating Point
LDXC1 Load Doubleword Indexed to Floating Point
LUXC1 Load Doubleword Indexed Unaligned to Floating Point
LwcC1 Load Word to Floating Point
LWXC1 Load Word Indexed to Floating Point
PREFX Prefetch Indexed
SDC1 Store Doubleword from Floating Point
SDXC1 Store Doubleword Indexed from Floating Point
SUXC1 Store Doubleword Indexed Unaligned from Floating Point
SWC1 Store Word from Floating Point
SWXC1 Store Word Indexed from Floating Point

Coprocessor 1

Mnemonic %
CFC1

CTC1

MFC1

MFHC1
MOV.fmt
MOVF.fmt
MOVN.fmt
MOVT.fmt
MOVZ.fmt

2016-2023

Hennessy & Patterson —

Move instructions

12

Description
Move Control Word from Floating Point
Move Control Word to Floating Point
Move Word from Floating Point
Move Word from High Half of Floating Point Register
Floating Point Move
Floating Point Move Conditional on Floating Point False
Floating Point Move Conditional on Not Zero
Floating Point Move Conditional on Floating Point True

Floating Point Move Conditional on Zero

— DR JEFF
CSUN 25| soFTwWARE
pCAonNI |V| | P S 3 2 | S A oesrommoren
NORTHRIDGE 2016—2023
COMP122

Convert instructions

Coprocessor 1 ————— Hennessy & Patterson =

Mnemonic # Description 9 AR COmpa[e instructions

ALNV.PS Floating Point Align Variable

CEIL.L.fmt Floating Point Ceiling Convert to Long Fixed Point Mnemonic = Descripﬁon a
CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point C sond frat Floating Point Compare
CVT.D.fmt Floating Point Convert to Double Floating Point

CVT.L.fmt Floating Point Convert to Long Fixed Point

CVT.PS.S Floating Point Convert Pair to Paired Single

CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point

CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point

CVT.S.fmt Floating Point Convert to Single Floating Point

CVT.W.fmt Floating Point Convert to Word Fixed Point
FLOOR.L.fmt | Floating Point Floor Convert to Long Fixed Point
FLOOR.W.fmt | Floating Point Floor Convert to Word Fixed Point

PLL.PS Pair Lower Lower
PLU.PS Pair Lower Upper
PUL.PS Pair Upper Lower
PUU.PS Pair Upper Upper

ROUND.L.fmt | Floating Point Round to Long Fixed Point
ROUND.W.fmt | Floating Point Round to Word Fixed Point
TRUNC.L.fmt | Floating Point Truncate to Long Fixed Point
TRUNC.W.fmt | Floating Point Truncate to Word Fixed Point

S—— DR JEFF
CSUN Q SOFTWARE
. MIP S | | S A oerrononen
NORTHRIDGE 2016—2023

COMP122

Formats Instruction Details —
Instruction Formats:

Instruction formats: all 32 bite wide (one word):

€ L s L L .
tmmm - i Fmmm - tmm +
R-type format| Op-code| R, | R, : B | SA |Punct-code
- ————— e e e +
. v . 1€
e e +
I1-type format|Op-code | R, | R, | 28 complement constant
e e e e e e ——- +
. 26
o ————— e e e e e e e e e e ————————— +
J-type format| Op-code| jump_target |
it e e e ——— +
MIPS Instructions | |
bit 31 bit 0

General notes:

a. R, R, and R, specify general purpose registers

b. Sguare brackets ([)}) indicate “the contents of"

c. [PC) specifies the address of the instruction in execution

d. I specifies part of instruction and its subscripts indicate
bit positions of sub-fields

e. || indicates concatenation of bit fields

f. Superscripts indicate repetition of a binary value

g. M{i} is a value (contents) of the word beginning at the memory
address i

h. m{i} is a value (contents) of the byte at the memory address i

i. all integers are in 2's complement representation if not

indicated as unsigned

1. addition with overflow: add instruction
trrr - LR LR LR LR EEEEE R et

R-type format | 000000 | R | R | R, | oocoo | 100000 |
AL AR L AL AL LAl A ld DR LA B L A AL A L LRl Sl b bl b AL A R L AL 4
Effects of the instruction: R, «<-- [R)] + [R]; PC <-- [PC] + 4
(If overflow then exception processing)
Assembly format: add R,R_,R

gra) DR JEFF
CSUN Q SOFTWARE
MIPS | ISA B
T NORTHRIDGE

2016-2023
COMP122 . .
Add/Sub Instruction Details —
l. addition with overflow: add instruction
$---———- $--—--——- +------- +---———- +---———- +---m— - +
R-type format | 000000 | R, | R, | R, | 00000 | 100000 |
$---m——-- $-----—- +------- +----——- +-----—- +---mm - +
Effects of the instruction: R, <-- [R]) + [R]; PC <-- [PC] + 4

(If overflow then exception processing)
Assembly format: add R,,R_,R,

2. add without overflow: addu instruction
Identical as add instruction, except:

- funct=33_

- overflow ignored

3. subtract with overflow: sub instruction

Effects of the instruction: R, <-- [R,] - [R]; PC <-- [PC] + 4
(If overflow then exception processing)
Assembly format: sub R,,R,,R,

4. subtract without overflow: subu instruction
Identical as sub instruction, except:

- funct=35

- overflow ignored

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

gran DR JEFF
E SOFTWARE
MIPS | ISA oo

2016-2023

Mul/Div Instruction Details —

S. multiply: mul instruction

e e e B

R-type format | 000000 | R | R | ooooo | oocoo | 011000 |

e e e e e e B

Effecte of the instruction:Hi||Lo <-- [R]) * [R]); PC <-- [PC) + 4
Assembly format: mult R_,R,

6. unsigned multiply: mulu instruction

Identical as mut instruction, except:

- funct = 25_

- contents of R, and R, are considered as unsigned integers

7. divide: div instruction
e R e e +
R-type format | 000000 | R, | R | ooooo | ooooo | 011010 |
e R e +

Effecte of the instruction: Lo <-- [R,)] / [R]); Hi <-- [RImod[R)]
PC «-- [PC] + 4
Assembly format: div R, ,R,

8. unsigned divide: divu instruction

Identical as div instruction, except:

- funct = 27

- contents of R, and R, are considered as unsigned integers

@ DR JEFF
CSUN 23 soFTwARE
. |V| | P S | | S A Seesesmi
NORTHRIDGE 2016—2023

COMP122 Load/Store Instruction Details —
22. load word: lw instruction
tmmmm———- tmmm———- - LR L L L +
I-type format: | 100011 | R, | R, | offset
tmmmm———- +mmm———- - +-mmmecccc e cc e e e e +
Effects of the instruction: R, <-- M{[R,] + [I.]" || (I, .1}

PC <-- [PC] + 4
(If an illegal memory address then exception processing)
Assembly format: lw R ,offset(R))

23. store word: sw instruction

temmmcne- temmcen- e el L L L L el L L L +
I-type format: | 101011 | R, | R, | offset |

fom - - - Fommmm-- Fommmm - bR L R L Ll L LD +
Effects of the instruction: M{[R)] + [I.] || [I. .0} <-- [R]

PC <-- [PC] + 4
(If an illegal memory address then exception processing)
Assembly format: sw R ,offset (R))

27. load upper immediate: lui instruction

R N R e +
I-type format: | 001111 | 00000 | R, | immediate |

R S N e +
Effects of the instruction: R <-- [I..] || 0°; PC <-- [PC] + 4

Assembly format: lui R, immediate

CSUN : B8 sorrware
Addressing Modes
COMP122

MIPS addressing mode summary

Patterson & Hennessy

Multiple forms of addressing are generically called addressing modes. The figure below shows how operands are identified for each
addressing mode. The MIPS addressing modes are the following:

1. Immediate addressing: The operand is a constant within the instruction itself

2. Register addressing: The operand is a register

3. Base addressing / displacement addressing: The operand is at the memory location whose address is the sum of a register and a
constant in the instruction

4. PC-relative addressing: The branch address is the sum of the PC and a constant in the instruction

5. Pseudodirect addressing: The jump address is the 26 bits of the instruction concatenated with the upper bits of the PC

1. Immediate addressing

|op | rsl rt | Immediate |

2. Register addressing
|op I rs | rt I rd I Ifunct| Registers
L | Register

3. Base addressing

Iop | rs | rt [Address | Memory

| Register |®—~
4, PC-relative addressing

[op|rs|rt| Adaress | Memory

| PC | Word

5. Pseudodirect addressing

| op | Address | Memory
[

[PC | @— Word

| I

DR JEFF

¢ %JSOFTWARE
~MIPS Assembly: Address Modes e

COMP122 P&H Ch2

1. Immediate addressing

| op | rs | rt Immediate

2. Register addressing

R op|rs|rt|rd].../funct Registers
L Register

3. Base addressing offset

| op|rs | rt Address 1 Memory
Register base Jl : - Word
}

[

4. PC-relative addressing

| op | rs l rt Address Memory
cond

PC Word
|

5. Pseudodirect addressing

.l op Address Memory
: |

4msb PC 30 bits Word
| } |

e DR JEFF
)| SOFTWARE

‘“*'
INDIE APPDEVELOPER
“=MIPS Assembly: Address Modes i
NORTHRIDGE [] 2016-2023

COMP122

Iw offset(reg) primitive

MIPS MARS License

MARS 4.5 Help

Bugs/Comments Acknowledgements Instruction Set Song

-100($t2)

Load & S*ore addressing mode, basic instructions

sign-extended 16-bit integer added to contents of $t2

Load & Store addressing modes, pseudo instructions

($t2)

-100

100

100000

100($t2)
100000(%$t2)

label

label($t2)
labe1+100000
label1+100000($t2)

contents of $t2

signed 16-bit integer

unsigned 16-bit integer

signed 32-bit integer

zero-extended unsigned 16-bit integer added to contents of $t2
signed 32-bit integer added to contents of $t2

32-bit address of label

32-bit address of label added to contents of $t2

32-bit integer added to label's address

sum of 32-bit integer, label's address, and contents of $t2

CSUN B sorrware
sTATE Ny Loa d Pseu d o0 PS ©ef Drobman

COMP122

The MIPS assembler (and SPIM) synthesizes the more complex addressing modes by producing one or more instructions before
the load or store to compute a complex address. For example, suppose that the label table referred to memory location
0x10000004 and a program contained the instruction

ld Sa0, table + 4(%al)

The assemblir would translate this instruction into the instructions

lui Sat, 4096
addu Sat, Sat, Sal
lw Sa0, 8(Sat)

The first instruction loads the upper bits of the label's address into register Sat, which is the register that the assembler reserves
for its own use. The second instruction adds the contents of register Sal to the label's partial address. Finally, the load instruction
uses the hardware address mode to add the sum of the lower bits of the label's address and the offset from the original instruction
to the value in register $at.

la = load address (32-bit)

CSUN : .y (B soFrware
Immediates (16/32-bit) & e

2016-2023
COMP122

1. Immediate addressing
op| rs | rt Immediate

32-bit immediate operands
parTicipaTioN | 2.10.7: The lui instruction, and how to load a 32-bit constant (COD Figure 2.17 D

UL (The effect of the lui instruction)).
m D 2x speed
lui $t0, 255 # $t0 is register 8 IL”
001111 | 00000 | 01000 0000 0000 1111 1111
lui instruction:
$t0 | 0000 0000 1111 1111 0000 0000 0000 0000
How load following 32-bit constant into $s07?
. 0000 0000 0011 1101 0000 1001 0000 0000
H 'gh HW (61 in decimal) (2304 in decimal)
lui |$Ss0,] 61

$s0 | 000000000011 1101 0000 0000 0000 0000

ori |$s0, S$s0,) 2304
Low HW $s0 | 0000 0000 0011 1101 0000 1001 0000 0000

CSUN : B2 sorrware
o Load: lui vs. Sgp

Because the data segment begins far above the program at address 10000000y, load and store instructions cannot directly
reference data objects with their 16-bit offset fields (see COD Section 2.5 (Representing Instructions in the Computer)). For
example, to load the word in the data segment at address 10010020y into register $v0 requires two instructions:

lui $s0, 0x1001 # 0x1001 means 1001 base 16 z e Stack segment
lw $v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

Dynamic data el :
——————————— ata segmen

Static data g

10000000,,¢,
Text segment
400000 ™ Reserved

To avoid repeating the lui instruction at every load and store, MIPS systems typically dedicate a register ($gp) as a global
pointer to the static data segment. This register contains address 10008000y, S0 load and store instructions can use their
signed 16-bit offset fields to access the first 64 KB of the static data segment. With this global pointer, we can rewrite the
example as a single instruction:

lw $v0, 0x8020(S$gp)

Of course, a global pointer register makes addressing locations 100000004, = 1001000044 faster than other heap locations.
The MIPS compiler usually stores global variables in this area, because these variables have fixed locations and fit better than

other global data, such as arrays.

@sa DR JEFF
CSUN 25| soFTwWARE
. |V| | P S | | S A Seesesmi
NORTHRIDGE

2016-2023
COMP122 : :
BR/Jump Instruction Details —
28. branch on equal: beq instruction
Fm-mmmm - +mmmm— - +m-m——-- o e e e e e e e e mmmam oo +
I-type format: | 000100 | R, | R, | offset
N e N it S e T +

Effects of the instruction:
if [R,] = [R] then PC <-- [PC] + 4 + ([T,.1" || [I,.. || 09
(i.e. PC <-- [PC] + 4 + 4*offset)
else PC <-- [PC] + 4
Assembly format: beq R,,R,,offset

32. branch on less than zero: bltz instruction

t--———— - te-————- t==————- e +
I-type format: |000001 | R, | 00000 | offset

+-——— - +--————- +=-————- e +
Effects of the instruction:
if [R)] < 0 then PC <-- [PC] + 4 + ([TI.1" || [I..] || 09

else PC <-- [PC] + 4
Assembly format: bltz R, ,offset

33. jump: j instruction

- —— - o e e e e e e e oo +
J-type format|000010 | jump target

T e e +
Effects of the instruction: PC <-- [PC, _.1 || [I...] || ©o°

Assembly format: j jump target

f DR JEFF
CSUN 24| soFTware
. |V| | P S | | S A Seesesmi
NORTHRIDGE 2016—2023
COMP122

Exception Handling

When a condition for any exception (overflow, illegal op-code,
division by zero, etc.) occurs the following hardware exception
processing is performed:

EPC Instruction Details —

EPC <-- [PC]

/
0’ 1010 if illegal op-code (10)
Cause Reg <-- 0 1100 if overflow (12)
0" 100 if illegal memory address (4)
A etc.

PC <-- 80000180,
40. move from EPC: mfepc instruction
Effects of the instruction: R, <-- [EPC]; PC <-- [PC] + 4
Assembly format: mfepc R, (This is mfcO0 Rt,CPOregl4)

41. move from Cause Reg: mfco instruction

R-type format | 010000 | 00000 | R, | 01101 | 00000 | 000000 |

Effects of the instruction: R, <-- [Cause Reg]; PC <-- [PC] + 4

i DR JEFF
CSUN 254 soFTwaRE
INDIEAPPDEVELOPER
ooy MIP S | | S A erronores
NORTHRIDGE 2016‘2023

COMP122

FP Load/Store Instruction Details —

Floating Point Instructions

42. load word into co-processor 1: lwecl instruction

R R R fmmmm e m e +
I-type format: | 110001 | R, | £ | offset

e e e fmmmm e mm e +
Effects of the instruction: £ <-- M{[R] + [I. 1" || (I, .1}

PC <-- [PC] + 4
Assembly format: lwcl £ ,offset(R,)

43. store word from co-processor 1l: swcl instruction

ettt Fmmmm——- +mm————- Fmmm e e e e e +
I-type format: | 111001 | R, | £, | offset |

Fmmmmmm - R R e +
Effects of the instruction: M{[R,)] + [I. 1" || (I. .} <-- [£.]

PC <-- [PC] + 4
Assembly format: swcl £ ,offset(R,)

i DR JEFF
CSUN 254 soFTwaRE
ooy MiI PS | | S A oerrononen
NORTHRIDGE

2016-2023
COMP122 FP Instruction Details —

44. addition single precision: add.s instruction

s o v o e sl o s o o Sl o o e oo +
R-type format | 010001 | 00000 | £, | £, | iE | 000000 |
e s s i e e e o A B o +
Effects of the instruction: £, <-- [£] + [£]; PC <-- [PC] + 4

d
(If overflow then exception processing)

Assembly format: add.s R,R_,R,

45. addition double precision: add.d instruction

Effects of the instruction:f | |£, <-- [£]1]||[£,] + [£]1]|]|[£.]:
PC <-- [PC] + 4
(If overflow then exception processing)
Assembly format: add.d f£,,f_, £,

45. subtract single precision: sub.s instruction
Similar as add.s but with funct=1

46. subtract double precision: sub.d instruction
Qimilar aa add 4d but with fiinect=1

CSUN) sorrwars
. C ontro | C P O e

2016-2023
COMP122 7.7 Exceptions and interrupts — Hennessy & Patterson —

Figure 7.7.1: Coprocessor 0 registers.

| = CR—
name number

BadVAddr 8 memory address at which an offending memory reference occurred
Count ‘ 9 timer
Compare . 11 ' value compared against timer that causes interrupt when they match
Status 12 . interrupt mask and enable bits
13 exception type and pending interrupt bits

EPC 14 ~address of instruction that caused exception
Config configuration of machine
Figure 7.7\2: The status register (COD Figure
Interrupt handler. A piece of code that is run as a result of an exception or an interrupt.
Exception handler -§ B
-.a%_ g8
PSW 385828
15 8 4 10
fclviv/z 0
Interrupt |E
Flags ke

Interrupts(8) User/system

CSUN] B sorrware
Exceptions (EPC)

COMP122

Hennessy & Patterson —

Figure 7.7.3: The cause register (COD Figure
T2

31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 7.7.4: Causes of exceptions.

0 Int | ' Interrupt (hardware)

4 AdEL ' address error exception (load or instruction fetch)
5 | AJES | address error exception (store)
6 IBE | bus error on instruction fetch

7 DBE | bus error on data load or store

8 Sys | ' syscall exception

9 Bp breakpoint exception

10 RI reserved instruction exception

11 ‘ CpU . coprocessor unimplemented

12 | Ov ‘ arithmetic overflow exception

3 |[[] we

i] SYS JSONSRS pORR.

CSUN E)sorrware
oAk TS O PCO de Ma P ©Jef robmar
COMP122

Figure 7.10.2: MIPs opcode map (COD Figure A.10.2).

Hennessy & Patterson —

The values of each field are shown to its left . The first column shows the values in base 10, and the second shows base 16 for the op
field (bits 31 to 26) in the third column. This op field completely specifies the MIPS operation except for six op values: 0, 1, 16, 17, 18,
and 19. These operations are determined by other fields, identified by pointers. The last field (funct) uses *f' to mean "s" if rs = 16 and op
=17 or'd"ifrs =17 and op = 17. The second field (rs) uses "z" to mean "0","1", "2", or "3" if op = 16, 17, 18, or 19, respectively. If rs = 16,
the operation is specified elsewhere: if z = 0, the operations are specified in the fourth field (bits 4 to 0); if z = 1, then the operations are in
the last field with f = s. If rs = 17 and z = 1, then the operations are in the last field with f = d.

(16:186) (16:16)
—» 0 | movf — 0 | movf.f l
1 | movt 1 | movt.f

10 16 op(31:26) 10 funct(5:0) 10 funct(5:0) * funct(5:0)
0 00 © » 0 [sl » 0 |add.r 0 | madd
1 01 1 Ps 1 | sub.f 1 | maddu
2 02|} 2| sd 2 | mul.f 2| mul
3 03]jal 3| sra 3 | diwf 3
4 04 beq 4 | sliv 4 | sqrt.f 4 | msub
5 05| bne 5 5 | abs.f 5 | msubu
6 06 | blez 6 | sriv 6 | mov.f 6
7 07 | bgtz 7 lsrav 7 | neg.f 7
8 08 | addi 8| 8 8
9 09 | addiu g | jalr 9 9

10 Oa | shi 10 | movz 10 10

11 Ob | sltiu 11 | mown 11 11

12 Oc | andi 12 | syscall 12 | round.w.f 12

13 0d | or 13 | break 13 | trunc.w.f 13

14 Oe | xori 14 14 | cell.w.f 14

15 0f | i 15 | sync 15 | Hoor.w.f 15

16 10| 2z=0 @& 16 | mthi 16 16

17 11 |z=1 @ > 17 | mthi 17 L 17

18 12|2=2 & - 18 | mflo 18 | movz.f 18

19 13 19 | mtlo 19 | mowvn.f 19

20 14 | begl 20 20 20

21 15| bnel 21 21 21

22 16 | blezl 22 22 22

23 17 | bgtzl 23 23 23

24 18 24 | mult 24 24

25 19 25 | multu 25 25

26 1a 26 | Owv 26 26

27 1b 27 | divu 27 27

28 1c 28 28 28

29 1d i \ ' Y 29 29 29

30 1e rs fzetorzm2 funct -_-" - 30 30 30

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

-

CONONHLBN=-OD

16
00
01
03
05
o7

09
Oa
0b

0d
Oe
ot
10
1"
12
13
14
15
16
17
18
19
1a
1b
1c
1d
1e
11
20
21

23
24
25

27
28
29
2a
2b
2¢
2d
2e
2f

31
33
35
37
39

3a
3b

3e
3f

DR JEFF
SOFTWARE

INDIE APPDEVELOPER
‘ O e a © Jeff Drobman
2016-2023
(16:16) (16:16)
-0 [~omoir | = Hennessy & Patterson
1 | momt 1 | movt.f I
op(31:26) 10 funct(5:0) 10 funct(5:0) ‘ funct(5:0)
- » 0 [sl —» 0 [add.’ 0 [madd
1 IS 1 | sub.f 1 | maddu
J 2| sd 2 | mul.f 2| mul
jal 3| sra 3 | div.f 3
beq 4| sliv 4 | sqrt.f 4 | msub
bne 5 5 | abs.f 5 | msubu
blez 6 | sriv 6 | mov.f 6
bgtz 7 | srav 7 | neg.f 7
addi 8| 8 8
addiu 9 | jalr 9 9
slti 10 | movz 10 10
sltiv 11 | movn 11 11
andi 12 | syscall 12 | round.w.f 12
orl 13 | break 13 | trunc.w.f 13
xori 14 14 | cell.w.f 14
i 15 | sync 15 | floor.w.f 15
z=0 16 | mihi 16 16
z=1 > 17 | mthi 17 17
z=2 & 18 | milo 18 | movz.f 18
19 | mtlo 19 | mown.f 19
beql 20 20 20
bnel 21 21 21
blezl 22 22 22
bgtzl 23 23 23
24 | muit 24 24
25 | multu 25 25
26 | dv 26 26
27 | divu 27 27
® 28 28 28
\ ; J 29 29 29
rs fzmtlorz=s2 funet f 30 30 30
(25:21) (17:16) = (4:0) (20:16) 31 31 31
) 0 z 0 | bezf 0 0 | bitz 32 | add 32 | evts.f 32 G
h 1 1 | tibr 1| bgez 33 | addu 33 | evtd.f a3 clo
i 2 | cfcz 2 | tlowi 2 | bitzl 34 | sub 34 34
w 3 3 3 | bgezl 35 | subu 35 35
lou 4 | micz B 4 36 | and 36 | evtw.f 36
hu 5 5 5 37 | or 37 37
wr 6 | ctcz 6 | tiowr 6 38 | xor 38 38
7 7 ré 39 | nor 39 39
sb 8 - 8 | tibp 8 | tgei 40 40 40
sh 9 9 9 | tgeiu 41 41 41
swl 10 10 10 | i 42 | sit 42 42
sw 1 1 11 | titiv 43 | sltu 43 43
12 12 12 | tegl 44 a4 44
13 13 13 45 as a5
swr 14 itz=0 | 14 14 | tnei 46 46 46
cache 15 15 15 47 a7 47
] 16 | copz 16 16 | bitzal 48 | tge 48 | cif 48
wet 17 | copz e—— 17 17 | bgezal 49 | tgeu 49 | cun.f 49
we2 18 fze1,ifz=1] 18 18 | bitzall 50 | tit 50 | c.eq.f 50
pref 19 f=d =5 19 19 | bgezall 51 | tiu 51 | c.ueq.f 51
20 20 20 52 | teq 52 | c.oltf 52
Idc1 21 21 21 53 53 | c.ult.f 53
Idc2 22 22 22 54 | tne 54 | c.ole.f 54
23 23 23 55 55 | c.ule.f 55
sC 24 24 | eret 24 56 56 | c.sf.f 56
swcl 25 25 25 57 57 | c.ngle.f 57
sSwc2 26 26 26 58 58 | c.seq.f 58
27 27 27 59 59 | c.ngl.f 59
28 28 28 60 60 | clt.f 60
sdcl 29 29 29 61 61 | c.nge.f 61
sdc2 30 30 30 62 62 | cle.f 62
N y 3 deret 31 63 63 | c.ngt.f 63

f DR JEFF
CSUN 24| soFTware
. M | P S | | - | | | | S A Jepaian

NORTHRIDGE 2016—2023
COMP122 CPU Wikipedia
MIPS I [edit)

MIPS Il removed the load delay slotl*}4! and added several sets of instructions. For shared-memory multiprocessing, the Synchronize Shared Memory, Load Linked
Word, and Store Conditional Word instructions were added. A set of Trap-on-Condition instructions were added. These instructions caused an exception if the
evaluated condition is true. All existing branch instructions were given branch-likely versions that executed the instruction in the branch delay slot only if the branch is
taken.[“140 These instructions improve performance in certain cases by allowing useful instructions to fill the branch delay slot.[4212 Doubleword load and store
instructions for COP1-3 were added. Consistent with other memory access instructions, these loads and stores required the doubleword to be naturally aligned.

The instruction set for the floating point coprocessor also had several instructions added to it. An IEEE 754-compliant floating-point square root instruction was added.
It supported both single- and double-precision operands. A set of instructions that converted single- and double-precision floating-point numbers to 32-bit words were
added. These complemented the existing conversion instructions by allowing the IEEE rounding mode to be specified by the instruction instead of the Floating Point
Control and Status Register.

MIPS Computer Systems' R6000 microprocessor (1989) was the first MIPS Il implementation.[“]® Designed for servers, the R6000 was fabricated and sold by Bipolar
Integrated Technology, but was a commercial failure. During the mid-1990s, many new 32-bit MIPS processors for embedded systems were MIPS Il implementations
because the introduction of the 64-bit MIPS IIl architecture in 1991 left MIPS Il as the newest 32-bit MIPS architecture until MIPS32 was introduced in 1999.A[4)19

MIPS III | edit)

MIPS Il is a backwards-compatible extension of MIPS Il that added support for 64-bit memory addressing and integer operations. The 64-bit data type is called a
doubleword, and MIPS |l extended the general-purpose registers, HI/LO registers, and program counter to 64 bits to support it. New instructions were added to load
and store doublewords, to perform integer addition, subtraction, multiplication, division, and shift operations on them, and to move doubleword between the GPRs and
HI/LO registers. Existing instructions originally defined to operate on 32-bit words were redefined, where necessary, to sign-extend the 32-bit results to permit words
and doublewords to be treated identically by most instructions. Among those instructions redefined was Load Word. In MIPS Il it sign-extends words to 64 bits. To
complement Load Word, a version that zero-extends was added.

The R instruction format's inability to specify the full shift distance for 64-bit shifts (its 5-bit shift amount field is too narrow to specify the shift distance for doublewords)
required MIPS Ill to provide three 64-bit versions of each MIPS | shift instruction. The first version is a 64-bit version of the original shift instructions, used to specify
constant shift distances of 0-31 bits. The second version is similar to the first, but adds 324, the shift amount field's value so that constant shift distances of 32-64 bits
can be specified. The third version obtains the shift distance from the six low-order bits of a GPR.

MIPS lIl added a supervisor privilege level in between the existing kernel and user privilege levels. This feature only affected the implementation-defined System
Control Processor (Coprocessor 0).

[—— DR JEFF
CSUN IQI SOFTWARE
ppChronN |V| | PS | | | |S A oesrommoren
CPU

2016-2023
COMP122 Wikipedia
CPU instructions added by MIPS Il
Instruction name Mnemonic | Format Encoding

Doubleword Shift Left Logical Variable DSLLV R 040 rs rt rd (VP 2049

Doubleword Shift Right Logical Variable | DSRLV R 010 rs rt rd 010 2240

Doubleword Shift Right Arithmetic Variable | DSRAV R 040 rs rt rd (VP 2349

Doubleword Multiply DMULT R (VT rs r 010 040 2849

Doubleword Multiply Unsigned DMULTU | R (VT rs r (V7)) (V) 2940

Doubleword Divide DDIV R (V) rs r 0190 040 3049

Doubleword Divide Unsigned DDIVU R (V) rs rt (V7 010 3149

Doubleword Add DADD R 010 rs rt rd 010 444,

Doubleword Add Unsigned DADDU R (VT rs r rd 040 4549

Doubleword Subtract DSuB R (V7)) rs r rd 040 4649

Doubleword Subtract Unsigned DSuUBU R (VT rs r rd (V) 4749

Doubleword Shift Left Logical DSLL R (V7)) (VT r rd sa 5640

Doubleword Shift Right Logical DSRL R 010 019 rt rd sa 5840

Doubleword Shift Right Arithmetic DSRA R (VT 019 n rd sa 590

Doubleword Shift Left Logical + 32 DSLL32 |R 010 010 rt rd sa 6010

Doubleword Shift Right Logical + 32 DSRL32 R (V1) 019 r rd sa 6249

Doubleword Shift Right Logical + 32 DSRL32 R (V7)) (V7)) n rd sa 6310

Doubleword Add Immediate DADDI | 2449 rs rd immediate

Doubleword Add Immediate Unsigned DADDIU | 2540 rs rd immediate

Load Doubleword Left LDL | 2640 rs r offset

Load Doubleword Right LDR | 2740 rs r offset

Load Word Unsigned LWuU | 3940 rs r offset

Store Doubleword Left SDL | 4449 rs rt offset

¥ DR JEFF
CSUN 25| soFTwWARE
o MIPS32 |ISA O i rshmen
NORTHRIDGE 2016_2023
COMP122 CPU
Trap instructions

Hennessy & Patterson —

Mnemonic Description s
BREAK Breakpoint % Traps
SYSCALL System Call

TEQ Trap if Equal

TEQI Trap if Equal Immediate

TGE Trap if Greater or Equal

TGEI Trap if Greater of Equal Inmediate

TGEIU Trap if Greater or Equal Immediate Unsigned
TGEU Trap if Greater or Equal Unsigned

TLT Trap if Less Than

TLTI Trap if Less Than Immediate

TLTIV Trap if Less Than Immediate Unsigned

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

TNEI Trap if Not Equal Immediate

i DR JEFF
CSUN 254 soFTwaRE
ooy MIP S 3) | S A oerrononen
NORTHRIDGE

2016-2023
COMP122

CPU Hennessy & Patterson —

MIPS32/MIPS64 [edi]

When MIPS Technologies was spun-out of Silicon Graphics in 1998, it refocused on the embedded market. Up to MIPS V, each successive version was a strict
superset of the previous version, but this property was found to be a problem,[c/ation needed] and the architecture definition was changed to define a 32-bit and a 64-bit
architecture: MIPS32 and MIPS64. Both were introduced in 1999.I'%] MIPS32 is based on MIPS Il with some additional features from MIPS IlI, MIPS IV, and MIPS V;
MIPS64 is based on MIPS V.I"*] NEC, Toshiba and SiByte (later acquired by Broadcom) each obtained licenses for MIPS64 as soon as it was announced. Philips, LSI
Logic, IDT, Raza Microelectronics, Inc., Cavium, Loongson Technology and Ingenic Semiconductor have since joined them.

MIPS32/MIPS64 Release 1 | edit)

The first release of MIPS32, based on MIPS Il, added conditional moves, prefetch instructions, and other features from the R4000 and R5000 families of 64-bit
processors.!'?] The first release of MIPS64 adds a MIPS32 mode to run 32-bit code.['®] The MUL and MADD (multiply-add) instructions, previously available in some
implementations, were added to the MIPS32 and MIPS64 specifications, as were cache control instructions.['?]

MIPS32/MIPS64 Release 3 | edit)

MIPS32/MIPS64 Release 5 | edit)

Announced on December 6, 2012.12%] Release 4 was skipped because the number four is perceived as unlucky in many Asian cultures.(?']

MIPS32/MIPS64 Release 6 | cdit)

MIPS32/MIPS64 Release 6 in 2014 added?? the following:

« a new family of branches with no delay slot:

CSUN B sorrware
rauTomNL MIPS32 |ISA A s
NORTHRIDGE 2016'2023

COMP122 CPU
Privileged instructions

Hennessy & Patterson —

EJTAG instructions

Mnemonic Description s
Mnemonic = Description s
CACHE Perform Cache Operation
DERET Debug Exception Return
CACHEE Perform Cache Operation EVA
SDBBP Software Debug Breakpoint
DI Disable Interrupts :
El Enable Interrupts
ERET Exception Return
MFCO Move from Coprocessor 0
MTCO Move to Coprocessor 0
RDPGPR Read GPR from Previous Shadow Set
TLBP Probe TLB for Matching Entry
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
WAIT Enter Standby Mode

WRPGPR Write GPR to Previous Shadow Set

CSUN

CALIFORNIA

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

MIPS32 ISA

Coprocessor 2

© Jeff Drobman
2016-2023

STATE UNIVERSITY
NORTHRIDGE

COMP122

Hennessy & Patterson —

Execute instructions . .
Move instructions

Mnemonic Description s R

Mnemonic =

9

Description

COP2 Coprocessor Operation to Coprocessor 2 CEC2 Move Control Word from Coprocessor 2
) . CTC2 Move Control Word to Coprocessor 2
Memory control instructions MFC2 Move Word from Coprocessor 2
Meemonic & Description s MFHC2 Move Word from High Half of Coprocessor 2 Register
DC2 Load Doubleword to Coprocessor 2 MTcz Move Word to Coprocessor 2
MTHC2 Move Word to High Half of Coprocessor 2 Register
LWC2 Load Word to Coprocessor 2
SDC2 Store Doubleword from Coprocessor 2 Branch instructions
SWC2 Store Word from Coprocessor 2

Mnemonic Description s

BC2F Branch on COP2 False

BC2T Branch on COP2 True
BC2FL Branch on COP2 False Likely
BG2TL Branch on COP2 True Likely

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ISA

Comparative

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN), == SOFTWARE
T Com pare ISA’S O eff Brobman

NORTHRIDGE 2016-2023
COMP122

** Desktop CPU’s (Large)
O Alpha
Q MIPS
O PowerPC
0 PA-RISC
O SPARC

s*Embedded CPU’s (small)
d ARM
d Thumb
O SuperH
d M32R
O MIPS-16

CSUN

S DR JEFF
SOFTWARE

L] Dr Jeff
INDIE APP DEVELOPER
e MIIPS vs. ARM Instructions seises
NORTHRIDGE L] 2016-2023

COMP122

Hennessy & Patterson

esult in part from whether the architecture has 16 registers (ARMv7) or 32 registers (ARMv8 and MIPS).

Reqgister-register

Data transfer

Branch

Jump/Call

31 2120 1615 109 54 0
recve [NNOROIONN Rn* [[Cons€ [R [Re |
31 2625 2120 1615 1110 65 0
wes [NCE Rs® | R | Re
31 2827 2019 1615 1211 43 0
T T
3 2120 1211109 54 0
LEGVS Re® | RS |
3 2625 2120 1615 0
wes N R [R [conw® |
31 2827 2019 1615 1211 0
N T T e
31 2423 54 0
Lecwe w |
31 2625 2120 1615 0
MIPS Rs1® 52°
31 2827 2423 0
N - — —
31 2625 0
O | T~
31 2625 0

31 2827 2423 0

| [l0pcode [JRegister []Constant |

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Desktop Instructions

Dr Jeff

Register-register

Register-immediate

Branch

Jump/call

Hennessy & Patterson

31 25 20 15 10 4 0
Alpha Opt Rs15 Rs25 Opx'1 Rd®
MIPS OpS Rs15 Rs25 RdS Opx6
PowerPC| OpS Rd5 Rs15 Rs25 Opx'1
PA-RISC Op* Rs15 Rs25 Opx'1 Rd5
SPARC [Opd Rd® | Opx | Rst5 |0] Opx® Rs25
31 29 24 18 13 12 4 0
31 25 20 15 0
Alpha Op8é Rd5
MIPS Op* Rs15
PowerPC Op8é Rd5
PA-RISC OpS Rs25
SPARC [Op? Rd® | Opx®
31 29 24 18 13 12 0
31 25 20 15 0
Alpha Op8é Rs15
MIPS OpS Rs15 /Rs2
PowerPC Op® Opx& Rs15
PA-RISC Op$ Rs25 Rs15 |Opx3
SPARC [0p? Opx'!
31 29 18 12 10
Alpha
MIPS
PowerPC
PA-RISC
SPARC

31

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Embedded Instructions

gra DR JEFF
Q SOFTWARE

© Jeff Drobman
2016-2023

COMP122 Hennessy & Patterson —
31 27 19 15 11 3 0
ARM Opx* Opx* Rs14 | Ra* Opx® Rs2*
Thumb Opf Opx4 | Rs3 | Rd3
Register-register ~ SuperH Op# Rd4 Rs14 | Opx4
M32R Op# Rd4 Opx4 | Rs*
MIPS-16 Op® Rd® | Rs13 [Rs23| —+Opx?
15 10 7 4 10
31 27
ARM Opx# Op3
Thumb Op5 | Ra3 |
Register-immediate SuperH Op* Rd*
M32R Op# Rad#4
MIPS-16 Op5 Rd3
15 10
ARM
Thumb
Data transfer SuperH
M32R

MIPS-16

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Embedded Instructions

] DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Branch

Jump

Call

ARM
Thumb
SuperH
M32R
MIPS-16

ARM
Thumb
SuperH
M32R
MIPS-16

ARM
Thumb
SuperH
M32R
MIPS-16

Hennessy & Patterson —

a1 27 0
Opx* | Op*
Op* | Opxt
Op#®
Opt | Rd* |Opxt| Rst
Op® | Rd?
15 10

15 25 0

DOpoodo DRogister .Constam

" DR JEFF
N Addressing Modes s
STA;:RI;TRVI?:}?TY g eff Drobman

2016-2023
COMP122

Hennessy & Patterson —

Desktop

T i R T e

‘ Register + offset (displacement or based)

' Register + register (indexed) . | X(FP) | X(Loads) X . X
Register + scaled register (scaled) X
' Register + offset and update register X X
' Register + register and update register » | | X . X
Embedded

T T T T T

Register + offset (displacement or based)

Register + register (indexed)

Register + scaled register (scaled)
'Register + offset and update register

Register + register and update register

Register indirect ‘ X X |

Autoincrement, autodecrement X
' PC-relative data X (loads) X j X (loads)

K| XX XX | X

>
>
>

>

CSUN

DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

~sume Address Sign Extension
NORTHRIDGE 2016‘2023
COMP122 Hennessy & Patterson —
Desktop
e e
Branch: all
Jump/call: all Sign — Sign s_ign Sign
Register-immediate: data transfer Sign Sign Sign ‘ Sign Sign
Registerimmediate: arithmetic Zero Sign Sign ; Sign Sign
Register-immediate: logical Zero Zero — Zero Sign
Embedded

S T N N

‘Branch: all
Jump/call: all Sign Slgn/Zero Slgn Sign —_
| Register-immediate: data transfer Zero Zero Zero Sign Zero
Register-immediate: arithmetic Zero Zero Sign Sign Zero/Sign
| Register-immediate: logical Zero — Zero Zero —

@% DR JEFF

CSUN IQI SOFTWARE
sTATE ONIVARSITY © Jeff Drobman
MIPS vs ARM o st

COMP122

Hennessy & Patterson —

10.12 Instructions unique to ARM [J Present R Note

(Original section’)

It's hard to pick the most unusual feature of ARM, but perhaps it is the conditional execution of instructions. Every instruction starts with a
4-bit field that determines whether it will act as a nop or as a real instruction, depending on the condition codes. Hence, conditional
branches are properly considered as conditionally executing the unconditional branch instruction. Conditional execution allows avoiding a
branch to jJump over a single instruction. It takes less code space and time to simply conditionally execute one instruction.

The 12-bit immediate field has a novel interpretation. The 8 least significant bits are zero-extended to a 32-bit value, then rotated right the
number of bits specified in the first 4 bits of the field multiplied by two. Whether this split actually catches more immediates than a simple
12-bit field would be an interesting study. One advantage is that this scheme can represent all powers of two in a 32-bit word.

Operand shifting is not limited to immediates. The second register of all arithmetic and logical processing operations has the option of
being shifted before being operated on. The shift options are shift left logical, shift right logical, shift right arithmetic, and rotate right. Once
again, it would be interesting to see how often operations like rotate-and-add, shift -right-and-test, and so on occur in ARM programs.

CSUN B3 sorrware
STATE UNIVERSITY M I PS VS A R IVI © Jeff Drobman

CALIFORNIA

NORTHRIDGE

INDIE APPDEVELOPER

2016-2023

COMP122

Hennessy & Patterson —

Remaining instructions

Below is a list of the remaining unique instructions of the ARM architecture:

Block loads and stores—Under control of a 16-bit mask within the instructions, any of the 16 registers can be loaded or stored into
memory in a single instruction. These instructions can save and restore registers on procedure entry and return. These instructions
can also be used for block memory copy—offering up to four times the bandwidth of a single register load-store—and today, block
copies are the most important use.

Reverse subtract—RSB allows the first register to be subtracted from the immediate or shifted register. RSC does the same thing, but
includes the carry when calculating the difference.

Long multiplies—Similarly to MIPS, Hi and Lo registers get the 64-bit signed product (SMULL) or the 64-bit unsigned product (UMULL).
No divide—Like the Alpha, integer divide is not supported in hardware.

Conditional trap—A common extension to the MIPS core found in desktop RISCs (COD Figure D.6.1 (Data transfer instructions not
found in MIPS core ...), COD Figure D.6.2 (Arithmetic/logical instructions not found in MIPS core ...), COD Figure D.6.3 (Control
instructions not found in MIPS core ...), COD Figure D.6.4 (Floating-point instructions not found in MIPS core ...)), it comes for free in
the conditional execution of all ARM instructions, including SWI.

Coprocessor interface—Like many of the desktop RISCs, ARM defines a full set of coprocessor instructions: data transfer, moves
between general-purpose and coprocessor registers, and coprocessor operations.

Floating-point architecture—Using the coprocessor interface, a floating-point architecture has been defined for ARM. It was
implemented as the FPA10 coprocessor.

Branch and exchange instruction sets—The BX instruction is the transition between ARM and Thumb, using the lower 31 bits of the
register to set the PC and the most significant bit to determine if the mode is ARM (1) or Thumb (0).

S DR JEFF
CSUN M | P S o L
vsS ARM erronores
STATE UNIVERSITY
2016-2023

NORTHRIDGE

COMP122 Hennessy & Patterson —

Instruction name

KN
) ' L8 |

Load byte signed LDRSB LDRSB MOV.B LDB

Load byte unsigned LDRB LDRB | MOV.B: EXTU.B| LDUB LBU
Load halfword signed LDRSH LDRSH MOV . W LDH LH
Load halfword unsigned LDRH LDRH MOV.W; EXTU.W LDUH LHU
Load word LDR LDR MOV.L LD LW
Store byte STRB STRB MOV.B ST8 S8
Store halfword STRH STRH MOV.W STH SH
Store word STR STR MOV.L ST SW
Read, write special registers MRS, MSR 1 LDC, STC MVFC, MVTC MOVE

DR JEFF
CSUN 9 SOFTWARE
eChromnin |\/| | P S VS A R |V| oesrommoren

2016-2023
COMP122

Hennessy & Patterson —

el L AL 50 L C50 |

BT N T

Branch on integer compare B/cond BF, BT BEQ, BNE, BC, BNC, B__Z ' BEQZZ?, BNEZZ, BTEQZ?,
BTNEZ?
Jump, jump register MOV pe, ri MOV pc,ri | BRA, JMP | BRA, JMP B? JR
Call, call register BL BL BSR, JSR | BL,JL JAL, JALR, JALX2
Trap SWI SWI TRAPA TRAP BREAK
'Return from interrupt MOVS pc, r14 | —1 RTS RTE —1

: Conventions of embedded RISC instructions equivalent to MIPS core (COD Figure

| _Comventions | _ARMW | Thumb | _ Swer | MR __| _ MIPs1s

Return address reg. | R14 | R14 PR (special) R14 RA (special)
No-op !MOVIOrO |MOVr0ro _NOP NOP SLL 10, 1O
'Operands, order | OPRd,Rs1,Rs2 | OP Rd, Rs1 | OP Rs1, Rd | OP Rd, Rs1 | OP Rd, Rs1, Rs2

