P DR JEFF
CALIFORNIA
STATE UNIVERSITY @JS?FTW'LARE

DIEAPPDEVELOPER
NORTHRIDGE © Jeff Drobman

2016-2023

CSUN

COMP122

Rev. 9-28-23

ISA Architecture
RISC-V

Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

STATE UNIVERSITY

COMP122

Index

DR JEFF

|8 soFTWARE

© Je;ff Drobman
2016-2023

s*History = slide 3

**BSD -2 slide 31

**RISC-V ISA - slide 11
**R5 Foundation = slide 29
s*Benchmarks = slide 32
s*Cores =2 slide 35

s Design Tools = slide 43
s*Software =2 slide 48
**BSD - slide 51

**RISC-V Cores - slide 56

-)| DR JEFF
CSUN 23| soFTwARE
T RISC-V 8o Brobman
RRRRRRRRRR

2016-2023
COMP122

RISC-V
History

CSUN .) sorrwars
pCuroma RISC-V Histo ry SeEm———

2016-2023
COMP122

b RISCV S

RISC-V is a high-quality, license-free, royalty-free instruction set architecture (ISA)

« 5" generation RISC design from UC Berkeley (started in 2010)

« Appropriate for all levels of computing system, from microcontrollers to
supercomputers

* Multiple open-source and proprietary core implementations
» Custom extensions are encouraged

« Supported by growing software ecosystem
* RISC-V support for binutils, gcc, newlib, glibc, Zephyr, Linux, FreeBSD mainlined

« Standard maintained by the non-profit RISC-V foundation

CSUN . = D) soFrwaRe
STA(';.‘/I\EILL‘II.;(I)S:;‘;ITY R I S C—V H I StO ry ©JDef}PDrobman

2016-2023
COMP122

e
More than 750 RISC-V Members

across 50 Countries

85 Chip 4 Systems

SoC, IP, FPGA ODM, OEM

31/0 12 Industry

Memory, network, storage Cloud, mobile, HPC, ML, automotive
11 Services 56 Research

Fab, design services Universities, Labs, other alliances
35 Software 500+ Individuals

Dev tools, firmware, OS RISC-V developers and advocates

R RISC In 2020, RISC-V membership has grown by more than 60% 10

CSUN . SSIETJV%Z;E
prChuromia R S C_V Histo ry 6. b

RRRRRRRRRR

COMP122
Industry innovation on RISC-V
4 -
Hardware
- RV64, multi-heart
el
- chzm'i:ge hypervisors, debug mode -
modes, interrupts - Al SoCs
HaRvsz loT SoCs - Application
| ;ollers - processors

Concept SoCs .
rocessors for Software

- ?71,3!__:

Complexity

2010-2016 2017 -2018 2019 - 2020 2021 »
I RISC-V*

CSUN : : : &) sorrware
e RISC-V History Timeline — exison

2016-2023
COMP122
RISC-V Development Timeline &) siFive
Freedom Everywhere)
Raven-3 .. Base Platform Core Designer
—— ‘ @ SiFive Web Service
Started o : =
RISC-V =
Project RISC-V
. Raven-3.5 Foundation)
Exceeds 100+
Members
May May Apr Aug Feb Jul Sep Mar Nov Jul Aug - Nov* Oct Jun
2010 2011 2012 13 2014 2015 2016 201 2018
ined De.velopmenl EO.SZ2 .

of RISC-V Core
Generator

P RISC
Foundation
Freedom Unleasr

EOS14 EOS16 EOS20 Base Platform

- BOOKS (Patterson & Hennessy) oo
COMP122
RISC-V in Education &) siFive

COMPUTER
ARCHITECTURE

A Quantitative Approach

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@ DR JEFF
E SOFTWARE

INDIEAPPDEVELOPER
RV vs ARM

2016-2023
209

_ Qu()ra Home % Answ@ Eaa Spaces Q Notificatio? Q Semmm—

Currently, the microcontroller (or -more generally- low end processor) IP space is very
fragmented: ARM M series, MIPS M series, ANDES, Cortus, ARC, Codasip and many
others.

High end is exclusively ARM. | &&&3 Mlicrocontroller

Most of those are adopting RISC-V in a “consolidate but compete” manner: so Cortus,
Andes, Codasip have all stopped their proprietary ISAs in favour of RISC-V
compatibility.

And then there are new entrants: SiFive most obviously, but Cloudbear, Syntacore, ROA
etc

Western Digital has announced it is switching from ARC to RISC-V (one billion cores a
year), Nvidia has announced all their on chip microcontrollers and “minion” cores will be
RISC-V and there are many others.

Now, ARM is an excellent company with very good products and outstanding support.

As Microsoft and IBM can show it is entirely possible to succeed competing with open
source or a radical industry shift. But it is not easy.

And | absolutely recognise that an SoC or an IP core is a different dynamic to software:
if you try Libre Office and don't like it then it is a matter of moments to go back to MS
Office. That is (cough, cough...) slightly harder if you decide you don't like the CPU in
the SoC you just taped out....

BUT....

RISC-V is a very good architecture

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@ DR JEFF
E SOFTWARE

INDIEAPPDEVELOPER
RV vs ARM

2016-2023
177 -

Quora Home [/ Answeu. £ spaces Notifications QS

e e e

[Watch More

Ramdas Mozhikunnath, Experienced Microprocessor Verification engineer ®
and Intel Alumni
Answered November 25, 2018

It may not “displace” the ARM architecture completely, but it is going to find some
significant market share in embedded space.

ARM architecture is licensed by ARM (company) and involves a cost for any one who is
making systems around same. (Either as an architecture license cost or as an IP cost).

On the other hand RISC V is an open source architecture - and there is no licence cost
involved. This allows several of industry experts and academia to collaborate and
innovate on this architecture and develop an entire ecosystem around same. (unlike
limited to a single company like ARM)

Several companies have already made significant progress - SiFive is one the first
companies already licensing IP cores based on RISC V and providing customized
solutions. There are several other startups which are also building their own solutions.

Another interesting company is Esperanto technologies (lead by computer architecture
veteran Dave Ditzel) which is building energy efficient powerful RISC V cores for the
HPC market.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RISC-V

ISA

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

@& DR JEFF
CSUN 23 soFTwARE
. RISC-V L
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

The RISC-V Instruction Set Manual
Volume I: Unprivileged ISA
Document Version 20190608-Base-Ratified

Editors: Andrew Waterman®, Krste Asanovié¢!+?
!1SiFive Inc.,
2CS Division, EECS Department, University of California, Berkeley
andrew@sifive.com, krste@berkeley.edu
June 8, 2019

DR JEFF

252 soFTwARE
© Jeff Drobman

2016-2023

RISC-V

COMP122 Copyright (©) 2010-2016, The Regents of the University of California. All rights reserved.
The RISC-V Instruction Set Manual, Volume I: User-

Level ISA, Version 2.1

Andrew Waterman

! Yunsup Lee
David A. Patterson

Krste Asanovi¢

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-118
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html

May 31, 2016

@sa DR JEFF
CSUN 25 soFTWARE
pCAonNI R | SC_V oesrronmomn
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

Rationale

We developed RISC-V to support our own needs in research and education, where our group is
particularly interested in actual hardware implementations of research ideas (we have completed
eleven different silicon fabrications of RISC-V since the first edition of this specification), and
in providing real implementations for students to explore in classes (RISC-V processor RTL de-
signs have been used in multiple undergraduate and graduate classes at Berkeley). In our current
research, we are especially interested in the move towards specialized and heterogeneous accel-
erators, driven by the power constraints imposed by the end of conventional transistor scaling.
We wanted a highly flexible and extensible base ISA around which to build our research effort.

()l DR JEFF
CSUN Q SOFTWARE
T RISC-V 8o Brobman
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

XLEN-1 0
x0 / zero
x1
x2
x3
x4 XLEN = 32/64
x5
x6
x7
x8
x9

x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31
XLEN

XLEN-1 0

I pc
XLEN

Figure 2.1: RISC-V base unprivileged integer register state.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

RISC-V

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

@ DR JEFF
IQ'SOFTWARE

© Jeff Drobman
2016-2023

2.2

Base Instruction Formats

In the base RV32I ISA, there are four core instruction formats (R/I/S/U), as shown in Figure 2.2.
All are a fixed 32 bits in length and must be aligned on a four-byte boundary in memory. An
instruction-address-misaligned exception is generated on a taken branch or unconditional jump
if the target address is not four-byte aligned. This exception is reported on the branch or jump
instruction, not on the target instruction. No instruction-address-misaligned exception is generated
for a conditional branch that is not taken.

The alignment constraint for base ISA winstructions is relazed to a two-byte boundary when
mstruction extensions with 16-hit lengths or other odd multiples of 16-bit lengths are added
(i.e., IALIGN=16).

Instruction-address-misaligned exceptions are reported on the branch or jump that would
cause instruction misalignment to help debugging, and to simplify hardware design for systems
with JALIGN=32, where these are the only places where misalignment can occur.

31 25 24 20 19 1514 1211 76 0
| funct7 | 2 | rs1 [funct3 | rd | opcode |R-type
| imm|11:0] | 1 [funct3 | rd | opcode |I-type
| imm(11:5] | rs2 | sl | funct3 | imm[4:0] | opcode |S-type
| imm[31:12] | rd | opcode |U-type

Figure 2.2: RISC-V base instruction formats. Each immediate subfield is labeled with the bit
position (imm|z]) in the immediate value being produced, rather than the bit position within the
instruction’s immediate field as is usually done.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

RISC-V

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

@ DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Variable Length Instructions

XXXXXXXXXXXXXXaa

XXXXXXXXXXXXXXXX | XXXXXXXXXxxbbbl1l

©oXXXX | XXXXXXXXXXXXXXXX | xxxxxxxxxx011111

©oXXXX | XXXXXXXXXXXXXXXX | xxxxxxxxx0111111

©oXXXX | XXXXXXXXXXXXXXXX | xnnnxxxxx1111111

c o XXXX | XXXXXXXXXXXXxxxX | x111xxxxx1111111

Byte Address: base+4 base+2 base

16-bit (aa # 11)

32-bit (bbb # 111)

48-bit

64-bit

(80+16*nnn)-bit, nnn#111

Reserved for >192-bits

Figure 1.1: RISC-V instruction length encoding,.

(G DR JEFF
CSUN IQI SOFTWARE
T RISC-V 8o Brobman
NORTHRIDGE 2016-2023

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

2.6 Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit address space that
is byte-addressed and little-endian. The EEI will define what portions of the address space are
legal to access with which instructions (e.g., some addresses might be read only, or support word
access only). Loads with a destination of x0 must still raise any exceptions and cause any other
side effects even though the load value is discarded.

31 20 19 1514 12 11 76 0
imm|11:0) rsl funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 1514 12 1 76 0
imm(11:5] rs2 rsl funct3 | imm|4:0] opcode
7 5 5 3 5 7
offset[11:5 sre base width offset[4:0] STORE

Load and store instructions transfer a value between the registers and memory. Loads are encoded
in the I-type format and stores are S-type. The effective byte address is obtained by adding register

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

RISC-V

Integer Register-Register Operations

ALU

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

RV32I defines several arithmetic R-type operations. All operations read the rsf and rs2 registers
as source operands and write the result into register rd. The funct7 and funct? fields select the
type of operation.

31 25 24 20 19 14 12 11 76 0
funct7 rs2 rsl funct3 rd opcode
7 5 5 3 5 7
0000000 src2 srcl ADD/SLT/SLTU dest OoP
0000000 src2 srcl AND/OR/XOR dest OoP
0000000 src2 srcl SLL/SRL dest OP
0100000 src2 srcl SUB/SRA dest OoP

ADD performs the addition of rsf and rs2. SUB performs the subtraction of rs2 from rsi. Overflows
are ignored and the low XLEN bits of results are written to the destination rd. SLT and SLTU
perform signed and unsigned compares respectively, writing 1 to rd if rs! < rs2, 0 otherwise. Note,
SLTU rd, z0, rs2 sets rd to 1 if rs2 is not equal to zero, otherwise sets rd to zero (assembler
pseudoinstruction SNEZ rd, rs). AND, OR, and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in
register rs! by the shift amount held in the lower 5 bits of register rs2.

(G DR JEFF
CSUN IQI SOFTWARE
T RISC-V 8o Brobman
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

2.3 Immediate Encoding Variants IMM

There are a further two variants of the instruction formats (B/J) based on the handling of imme-
diates, as shown in Figure 2.3.

31 30 25 24 21 20 19 15 14 12 11 2 7 6 0
[funct? | rs2 [rsl | funct3 | rd | opcode | R-type
[imm|[11:0] [rsl | funct3 | rd | opcode | I-type
| imm|11:5] | rs2 [rsl | funct3 | imm [4:0) | opcode | S-type
[imm|12] | imm[10:5] | rs2 [rsl | funct3 [imm[4:1] | imm(11] | opcode | B-type
| imm|[31:12] | rd | opcode | U-type
| imm 20/ | imm|10:1] | imm|[11] | imm|19:12] [rd | opcode | J-type

Figure 2.3: RISC-V base instruction formats showing immediate variants.

’ . DR JEFF
CSUN Q SOFTWARE
INDIEAPPDEVELOPER
o RISC-V by i
NORTHRIDGE 2016‘2023

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

2.5 Control Transfer Instructions BR

RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

Volume I: RISC-V Unprivileged ISA V20190608-Base-Ratified 23
31 30 2524 2019 1514 12 11 8 7 6 0
imm|[12] | imm(10:5] | rs2 rsl funct3 imm|[4:1] | imm(11] opcode
1 6 5 5 3 4 1 7
offset[12]10:5] src2 srcl BEQ/BNE offset[11|4:1] BRANCH
offset[12]10:5] sre2 srel BLT|[U] offset[11|4:1] BRANCH
offset[12]10:5] sre2 srel BGE[U] offset[11|4:1] BRANCH

Branch instructions compare two registers. BE(Q) and BNE take the branch if registers rs1 and rs2
are equal or unequal respectively. BLT and BLTU take the branch if rsi is less than rs2, using
signed and unsigned comparison respectively. BGE and BGEU take the branch if rs! is greater
than or equal to rs2, using signed and unsigned comparison respectively. Note, BGT, BGTU,
BLE, and BLEU can be synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU,

respectively.

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

@ DR JEFF
IQI SOFTWARE
R I S C - V © Jeff Drobman
2016-2023

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

JMP

Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a
signed offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the
jump instruction to form the jump target address. Jumps can therefore target a =1 MiB range.
JAL stores the address of the instruction following the jump (pc+4) into register rd. The standard
software calling convention uses x1 as the return address register and x5 as an alternate link register.

The alternate link register supports calling millicode routines (e.g., those to save and restore
registers in compressed code) while preserving the regular return address register. The register
x6 was chosen as the alternate link register as it maps to a temporary in the standard calling
convention, and has an encoding that is only one bit different than the regular link reqister.

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=x0.

31 0 21 20 19 12 11 76 0
| imm[20] | imm|[10:1] | imm[11] | imm[19:12] | rd | opcode |
1 10 1 8 5 7
offset[20:1] dest JAL

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rs1, then setting
the least-significant bit of the result to zero. The address of the instruction following the jump
(pc+4) is written to register rd. Register x0 can be used as the destination if the result is not

required.
31 20 19 1514 12 11 76 0
| imm|[11:0] [rsl [funct3 | rd [opcode I
12 5 3 5 7
offset[11:0] base 0 dest JALR

The unconditional jump instructions all use PC-relative addressing to help support position-
wmndependent code. The JALR instruction was defined to enable a two-instruction sequence to
Jjump anywhere in a 32-bit absolute address range. A LUI instruction can first load rs1 with the

f DR JEFF

CSUN 24| soFTware

pCAonNI R | SC_V oesrronmomn
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.
NOP
NOP Instruction
31 20 19 15 14 12 11 76 0
imm[11:0] rsl funct3 rd opcode
12 5] 3 5] 7
0 0 ADDI 0 OP-IMM

The NOP instruction does not change any architecturally visible state, except for advancing the
pc and incrementing any applicable performance counters. NOP is encoded as ADDI z0, z0, 0.

()l DR JEFF
CSUN Q SOFTWARE
T RISC-V 8o Brobman
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

1.6 Exceptions, Traps, and Interrupts

We use the term ezception to refer to an unusual condition occurring at run time associated with
an instruction in the current RISC-V hart. We use the term interrupt to refer to an external
asynchronous event that may cause a RISC-V hart to experience an unexpected transfer of control.

We use the term trap to refer to the transfer of control to a trap handler caused by either an
exception or an interrupt.

The instruction descriptions in following chapters describe conditions that can raise an exception
during execution. The general behavior of most RISC-V EEIs is that a trap to some handler occurs
when an exception is signaled on an instruction (except for floating-point exceptions, which, in
the standard floating-point extensions, do not cause traps). The manner in which interrupts are
generated, routed to, and enabled by a hart depends on the EEL

Our use of “exception” and “trap” s compatible with that in the IEEE-754 floating-point stan-
dard.

@ DR JEFF
CSUN 25| soFTwWARE
INDIE APPDEVELOPER
o RISC-V by i
NORTHRIDGE 2016-2023

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

2.9 Environment Call and Breakpoints

31 20 19 1514 12 11 76 0
funct12 rsl funct3 rd opcode
12) 3 5 7
ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

The ECALL instruction is used to make a request to the supporting execution environment, which is
usually an operating system. The ABI for the system will define how parameters for the environment
request are passed, but usually these will be in defined locations in the integer register file.

The EBREAK instruction is used by debuggers to cause control to be transferred back to a debug-
ging environment.

ECALL and EBREAK were previously named SCALL and SBREAK. The instructions have
the same functionality and encoding, but were renamed to reflect that they can be used more
generally than to call a supervisor-level operating system or debugger.

; y DR JEFF
CSUN 25| soFTwWARE
. RISC-V L
NORTHRIDGE

2016-2023
COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved.

2.7 Memory Model

The base RISC-V ISA supports multiple concurrent threads of execution within a single user address
space. Each RISC-V thread has its own user register state and program counter, and executes an
independent sequential instruction stream. The execution environment will define how RISC-V
threads are created and managed. RISC-V threads can communicate and synchronize with other
threads either via calls to the execution environment, which are documented separately in the
specification for each execution environment, or directly via the shared memory system. RISC-V
threads can also interact with I/O devices, and indirectly with each other, via loads and stores to
portions of the address space assigned to I/0.

In the base RISC-V ISA, each RISC-V thread observes its own memory operations as if they
executed sequentially in program order. RISC-V has a relaxed memory model between threads,
requiring an explicit FENCE instruction to guarantee any specific ordering between memory oper-
ations from different RISC-V threads. Chapter@ describes the optional atomic memory instruction
extensions “A”, which provide additional synchronization operations.

31 28 27 26 25 24 23 22 21 20 19 1514 12 11 76 0
| 0 PI|PO|PR|PW|SI |SO|SR |SW rsl funct3 rd opcode]
4 1 1 1 1 1 1 1 1 5 3 5 7
0 predecessor successor 0 FENCE 0 MISC-MEM

The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-
V threads and external devices or coprocessors. Any combination of device input (I), device output

; Y DR JEFF
CSUN 25| soFTwWARE
pCAonNI R | SC_V oesrronmomn
2016-2023

NORTHRIDGE

COMP122 Copyright © 2010-2016, The Regents of the University of California. All rights reserved. Conditionals

Conditional Branches

All branch instructions use the SB-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2, and is added to the current pc to give the target address. The conditional

branch range is 4 KiB.

31 30 2524 2019 1514 12 11 8 7 6 0
imm[12] | imm[10:5] | rs2 rsl funct3 imm[4:1] | imm|11] opcode
1 6 5 5 3 1 1 7
offset[12,10:5] src2 srcl BEQ/BNE offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BLT|[U] offset[11,4:1] BRANCH
offset[12,10:5] src2 srcl BGE[U] offset[11,4:1] BRANCH

Branch instructions compare two registers. BEQQ and BNE take the branch if registers rsf and rs2
are equal or unequal respectively. BLT and BLTU take the branch if rsi is less than rs2, using

@sa DR JEFF
CSUN 25| soFTwWARE
pCAonNI R | SC_V oesrronmomn
NORTHRIDGE

2016-2023
COMP122 Copyright (C) 2010-2016, The Regents of the University of California. All rights reserved. Conditionals

The conditional branches were designed to include arithmetic comparison operations between
two registers (as also done in PA-RISC and Xtensa ISA), rather than use condition codes (z86,
ARM, SPARC, PowerPC), or to only compare one register against zero (Alpha, MIPS), or
two registers only for equality (MIPS). This design was motivated by the observation that a
combined compare-and-branch instruction fits into a reqular pipeline, avoids additional condition
code state or use of a temporary register, and reduces static code size and dynamic instruction
fetch traffic. Another point is that comparisons against zero require non-trivial circuit delay
(especially after the move to static logic in advanced processes) and so are almost as expensive as
arithmetic magnitude compares. Another advantage of a fused compare-and-branch instruction
is that branches are observed earlier in the front-end instruction stream, and so can be predicted
earlier. There is perhaps an advantage to a design with condition codes in the case where multiple
branches can be taken based on the same condition codes, but we believe this case to be relatively
rare.

We considered but did not include static branch hints in the instruction encoding. These
can reduce the pressure on dynamic predictors, but require more instruction encoding space and
software profiling for best results, and can result in poor performance if production runs do not
match profiling runs.

We considered but did not include conditional moves or predicated instructions, which can
effectively replace unpredictable short forward branches. Conditional moves are the simpler of
the two, but are difficult to use with conditional code that might cause exceptions (memory
accesses and floating-point operations). Predication adds additional flag state to a system, addi-
tional instructions to set and clear flags, and additional encoding overhead on every instruction.

@ DR JEFF
CSUN 23 soFTwARE
. RISC-V L
RRRRRRRRRR

2016-2023
COMP122

RISC-V
Foundation

&% DR JEFF
25 soFTWARE

[]
INDIEAPPDEVELOPER
gpaCALITORNIA (onso rt Ium Sl sien
RRRRRRRRRR 2016'2023

COMP122

@i URAPER bluespec & \2Zj YWVER pemesres

Research ™1

NVIDIA
A\ Mellanox B8 Microsoft X2 oKy §"é COrtus

g4icron SAMSUNG &5} SiFive . Rambus " vy

101
i

= BRI Google ©mi ' i QUALCOMW

B’ RIS C-\/ Foundation: 100+ Members

e | —
@ESPRESSIF AMDZ1 Anpes @VIDT E{:ﬁ: BAE SYSTEMS |
E;WL'"';-;J : @Silicon 2ZLATTICE ‘;1'(,;f(1'\1 @ runtime.o J antmicro csdnmr_v

crpooc GOEC wwnsx (&) ETHzirich
SH CONSULTING :
I"!!nll“lﬂ m! Rumble ~

OOOOOOOOO e i

CSUN . . (= B
Foundation Officers & e

2016-2023
COMP122 March 2021 -

RISC-V Board of Directors: Officers

Krste Asanovic David Patterson Zvonimir Bandic
Chairman of the Board Vice Chair Board Treasurer
Professor, EECS Department, UC Berkeley Distinguished Engineer, Google Senior Director of Next Generation Platform Technologies,

Western Digital Corporation

:‘ Rls‘ ®. Membership v RISC-V Exchange v Technical v News&Events v Community v (

y

Calista Redmond Jeffrey Osier-Mixon Jenni McGinnis Kim McMahon
CEO Program Manager Program Manager Director of Marketing
RISC-V International RISC-V International RISC-V International RISC-V International

Mark Himelstein Megan Lehn Stephano Cetola
CTO Program Manager Technical Program Manager

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RISC-V

Benchmarks

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

DR JEFF

CSUN . | SOFTWARE
e Static Code Benchmarks = esison
COMP122

RISC-V: SPECint2006 compressed code size (relative to “standard” RVC) @ SiFive

32-bit Architectures 64-bit Architectures

18 >
164) 8
11
140 13 40
190 17
100) 1%
) I I I I I I .
) %

*« RISC-V now smallest ISA for 32- and 64-bit addresses
* All results with same GCC compiler and options

RV

) DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN .

- Dynamic Code Benchmark
COMP122

RISC-V: Dynamic Bytes Fetched &) siFive

Total Dynamic Bytes T

[! : ! B ARMy7
B ARMvE
B3 RVE4G
) RVEAGC |

2.0 p— -

(o
w
| |

o
wn

dynamic instruction bytes
(normalized to x86-64)
—
o
]
|
1

o
o

+ RV64GC is lowest overall in dynamic bytes fetched

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RISC-V

Cores

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

SF 9| DR JEFF
&p) SOFTWARE
© Jeff Drobman

Coe NVIDIA (NVDLA)
@Si .

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122
NVIDIA Open Sources Deep Learning Accelerator (NVDLA)

ANNOUNCING

XAVIER DLA
NOW OPEN SOURCE |
= _ NVDL/ (:

onfiqural INa designed t

lary Awue
Sevwral Belsase September

CSUN : B sorrware
Custom Multi-Core

COMP122
Custom RISC-V Core Complex &) siFive

@ U7-MCSeries

)
=

L "

8 wPury --cC 08 w8 CC

——

Main Core Complex Bus

el 4 os

System Port Peripheral Port L2 Cache with £CC

Memary Pont

Mas Shared
Other e Non cacheable
SRAM

* ITIM and FIO Ports provide fast local SRAM and Accelerators
» Coherent System with a shared Level 2 Cache Controller
* Front Port allows other masters access to U7-MC Core Complex Memories

CSUN B soFrware
T MCU (Low Powe r) O eff Brobman

2016-2023
COMP122
@ FreedomEverywhere 32/64-bit Low-power Microcontroller Platform @ SiFive

FEJ10-GO00 Chip IO Cormoles £ 3.3V MOFF Pac
A W
=37 Cordmn LA
o w .-I-ru‘ .‘,'— e— : ot
1 e Cache 1 P 8-t
. oM
ol 2w - -1 -
= S . U
e)Y
J Pos— > g
Palrchon B M -
ol Decormprmser | = =
-
% — . - A K
VA -
wh G Ve
P ———— ‘ — -._
= 1
-1 r \ ¥
M (VS —— —
aip Dt Y. -] ' A (
A RAL g a ACN Pac
— - -
p ; ——
o= . - e vt = .
e -y "
e S—
]

K-h.; st ';- i:~. |
|

« 320+ MHz SiFive E31 CPU

» Multiple Power Domains
» Low-Power Standby
« Wide Range of Clock Inputs Freedom E310, QFN48, manufactured in TSMC 180nm

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Cheap (559) Dev Board

DR JEFF

238 soFTwARE
INDIE APPDEVELOPER
© Jeff Drobman
2016-2023

HiFive1: Arduino-Compatible RISC-V Dev Board

. PWM Pins: 9

. E=xternal Interrupt Pins:

. External Wakeup Pins:

® Host Interface (m

Order now at crowdsupply.com for $59

$59

. SiFive FE310-G000 (i

. Operating Voltage: 3.3

. Input Voltage: SV USB o
. 1O Voltages: Both 3.3 V ¢
. Digital I/0O Pins: 19

. SPI Controllers/HW CS |

&) siFive

INs: 1/3

. Flash Memory: 16 MB Quad SPI

CSUN : : : 2 soFrware
e 64-Bit Multi-Core Linux o i

2016-2023
COMP122
&) FreedomUnleashed 64-bit Multi-Core RISC-V Linux Platform &) siFive

FUSOO Base Plation: FPGA
@ Freedom £
- Ty e e R e
—— Al | USE-MC Coreplex N
- Thol ink
Debug Modu Patforrn Level LU
' i — S‘ | { o L Thelnk
Boot ROM WERRUPR Conte . 1 TS
‘ il
£51 Core 0 U Come 14 '
1 s
L1] -9) — orTpP
RVGUMAL RVEAGT e r— Mask ROM
-
SHRANM L1 08 £ an 4 { :
5 e 30 Cordt - P Biock
l '.‘ . S w1 .nu ; 1 J“‘.J :.;) —
bolLnk Sanc g — < —
Tielink Coherence Manager : [— 12C —
Banked L2S bl g > UART B L) i
et GPN i
l POWUSEY 00
) MIe = B

DORVE Controler PHY

i
* 1.5+ GHz U54-MC SiFive CPU

s Clock Geaneration
—_—

Sock/Peset Control s={]

« ChipLink

Freedom U540,

* DDR3/4, GbE, Peripherals

CSUN : 2 soFrware
Multi-Core Dev Board S i

2016-2023
COMP122
HiFive Unleashed: World’s First Multi-Core RISC-V Linux Dev Board @Si:

. SiFive FU540-C000 (built in 28nm)

. 8 GB 64-bit DDR4 with ECC

« Gigabit Ethernet Port

. 32 MB Quad SPI Flash

. MicroSD card for removable storage

. MicroUSB for debug and serial
communication

. Digital GPIO pins

. FMC connector for future expansion
with add

Order now at crowdsupply.com for $999

$999

. BB sorrware
CSUN =
sz FPGA EXpansion Board & e

2016-2023
COMP122

Develop Custom Accelerators with HiFive Unleashed Expansion Board @ SiFive

Brought to you by SiFive and Microsemi

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RISC-V

Design Tools

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

sTATEUNIVERS 7 RISC-V Desi gn ©ef Drobman

COMP122

Maven Silicon

Maven Silicon’s RISC-V Processor IP Verification Flow
by Sivakumar PR on 02-24-2023 at 6:00 am
Categories: Maven Silicon, RISC-V, Semiconductor Services

RISC-V is a general-purpose license-free open Instruction
Set Architecture [ISA] with multiple extensions. It is an ISA
separated into a small base integer ISA, usable as a base for
customized accelerators and optional standard extensions
to support general-purpose software development. RISC-V
supports both 32-bit and 64-bit address space variants for
applications, operating system kernels, and hardware
implementations. So, it is suitable for all computing systems,
from embedded microcontrollers to cloud servers.

CSUN : @A) sorrware
ChTomy RISC-V Des| gn et

2016-2023
COMP122

| have defined Maven Silicon’s RISC-V verification
flow using the correct by-construction approach.
The approach is to build a pre-verified
synthesizable RISC-V IP fundamental IP building
blocks library and create any kind of multi-stage
pipeline RISC-V processor using this library.
Finally, the multi-stage pipeline RISC-V processor
|P can be verified using Constrained Random
Coverage Driven Verification [CRCDV] in
Universal Verification Methodology [UVM] and
FPGA prototyping.

DR JEFF

CSUN . 25| soFTwWARE
INDIEAPPDEVELOPER
R s RISC-V Design O Erabrman
NORTHRIDGE 2016'2023
S— RISC-V Block RISC-V IP I—
Level Verification Verification
e o
€ _
&b ot € &b oe
RTL Coding + RISC-V multi-stage Pipeline . H
. Assertions RTL Design P I p € | Ine
Analysis I I
RISC-V Fundamental "
Building Blocks R ocon
i RTL Synthesis i
aia v . aia v
| Synthesis |
Formal Verification CRCDV using UVM ‘_I
l l Regression
i Testi
s RITC-\'I(. Verification signoff s 2
cinbon - i DD LI b with Code + Functional
Coverage Closure
RISC-V RTL Functional § |
Blocks Library
MAVER
o SILICON
Cantra of Eecellence in VLS|
Verified RISC-V FPGA Prototypin,
P S os BoottYPl e |e— .| ; DE - Design Engineer
VE VE - Verification Engineer

Figurel: Maven Silicon’s RISC-V IP Verification Flow

CSUN . S, P TARE
ChTomy RISC-V Des| gn L ot

2016-2023
COMP122

Environment

o<

instr agent
(AHB Slave)

=

data agent
(AHB Slave)

...........................

;4’ [~
"""""" — S~ .
""0' instr agent data agent .o< """" =
(AHB Slave) (AHB Slave)

- MAVER,

et T SILICON

f’-".
0 “‘L——-“—""/ Centre of Excellence in VLSI

Figure 2: Maven Silicon’s RISC-V IP UVM Verification Environment

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RISC-V

Software

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN D) sorrware
ChTomy RISC-V SOftwa re L ot

2016-2023
COMP122
RISC-V Software @ SiFive

» RISC-V assembler, compiler, C library ports are upstreamed
* binutils, GCC, newlib, glibc
» RISC-V OS ports are upstreamed
« Zephyr, Linux, FreeBSD
* RISC-V emulator ports are upstreamed
« QEMU
» RISC-V distribution ports are in progress
» Debian, Fedora, OpenEmbedded, OpenWRT, Gentoo

bluespec
ANDES

TECHNOLOGY

% DR JEFF
SOFTWARE

CSUN . :
. : INDIEAPPDEVELOPER
g Unix Kernel (Debian O ff brobman
NORTHRIDGE 2016'2023

COMP122
Debian RISC-V Distro @ SiFive

Whax pertent is Built or each seohiteciure (past quasrier)

hpoa a NACV Neahian P » nale
e B o SR, : ey Mo~V peblal ort Goals
3 i T ke i 8 g v S i s & S O Py et » m6Bk .
— - ' POWSIDCSPO Software-wise. this F‘(‘l’ /
op:{»-}_
ity target the Linux kernel
sparct4
32 ardware-wise, the port wil
3 target the 64-bit variant, little
: lan
i o . . More packages than ia64
. Debian Distro runs on the HiFive
Unleashed development board
with the SiFive Freedom US40
LM
2)

https://wiki.debian.org/RISC-V

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

ISA

; DR JEFF
254 soFTwaRE
© Jeff Drobman
2016-2023

https://www.youtube.com/watch?v=A0OC7KmHvx

RISC-V
BSD

9w

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.youtube.com_watch-3Fv-3DAOC7KmHvx9w&d=DwMFaQ&c=Oo8bPJf7k7r_cPTz1JF7vEiFxvFRfQtp-j14fFwh71U&r=XgHusfgp_qASYengbVCakIEcu7eERY8qFNzADDNQ7VA&m=rjbU2kOVNJRUh3PzqyFpw9OLTWQ2uOv2f0IPfDGBh7E&s=9TPp5rcJnjHs86a7hS8LS1y0qq-B2vErLJr3I7TeF1I&e=

CSUN .. 24 soFrware
RV Origin

2016-2023
COMP122

RISC-V Origin Story

* x86 impossible -IP issues, too complex
* ARM mostly impossible — no 64-bit, IP issues, complex
* So we started “3-month project” in summer 2010 to
develop our own clean-slate ISA
= Andrew Waterman, Yunsup Lee, Dave Patterson, Krste
Asanovic principal designers
= Four years later, we released frozen base user spec
= First public specification released in May 2011
- Many tapeouts and several publications along the way

Why are outsiders complaining about changes
to RISC-V in Berkeley classes?

i)| DR JEFF
CSIJN) ﬁ SOFTWARE
culpoamg”y I SA S CéNJDé?}PE[;‘g/ZLn‘)an
T NoRTHRIDGE

2016-2023
COMP122

: 4 Why Instruction Set Architecture matters
RISC v

* Why can’t Intel sell mobile chips?
= 99%+ of mobile phones/tablets based on ARM v7/v8 ISA

* Why can’t ARM partners sell servers?

- 99%+ of laptops/desktops/servers based on AMD64 ISA
(over 95%+ built by Intel)

* How can IBM still sell mainframes?
- IBM 360, oldest surviving ISA (50+ years)

ISA is most important interface in computer system
where software meets hardware

@ DR JEFF
CSUN . 254 soFTwaRrE
INDIEAPPDEVELOPER
pmShronNs Mu It - S A Josarroemonm
NORTHRIDGE 2016-2023

COMP122

* Applications processor (usually ARM) ke
» Graphics processors

» Image processors

» Radio DSPs

» Audio DSPs

= Security processors

» Power-management processor
e NVIDIA Tegra SoC
. Apps processor ISA too large for base accelerator ISA

* IP bought from different places, each proprietary ISA

« Home-grown ISA cores

« Over a dozen ISAs on some SoCs — each with unique

software stack

CSUN (s DR JEFF

gL i
Open Standards & e
COMP122

Open Software/Standards Work!

Field Standard | Free, Open Impl. Proprietary Impl.
Networking Ethernet, |Many Many

TCP/IP
oS Posix Linux, FreeBSD M/S Windows
Compilers G gee, LLVM Intel icc, ARMcc
Databases SQL MySQL, Oracle 12C,

PostgresSQL M/S DB2

Graphics OpenGL |Mesa3D M/S DirectX
ISA 22?22?22 | x86, ARM, IBM360

* Why not successful free & open standards and
free & open implementations, like other fields
= Dominant proprietary ISAs are dismal designs

CSUN BER sorvaR
24| soFrwarE
INDIEAPPDEVELOPER
. | S A oesrommoren
RRRRRRRRRR

2016-2023
COMP122

RISC-V
Cores

AAAAAAAAAA

TTTTTTTTTTTTTT

RRRRRRRRRR

COMP122

= DR JEFF
254 soFTwARE

2016-2023

€emidynamic® RISC-V Cores & B

Way beyond tailorable, fully configurable RISC-V
cores match the requirements

Most RISC-V vendors offer a good list of tailorable
features for their cores. Atrevido has been envisioned
from the ground up as a fully customizable core where
everything is on the table. A customer interview phase
determines the application’s needs, and then the core is
optimized for power-performance-area (PPA). Don’'t need
a vector unit? No problem. Change the address space?
Sure. Need custom instructions? Straightforward.
Coherency, scheduling, or tougher needs? Semidynamics
has carved out a unique space apart from the competition,
providing customers with better differentiation as they
can open up the core for changes - Open Core Surgery,
as Espasa enthusiastically terms it. “We can include
unique features in a few weeks, and have a customized
core validated in a few months,” says Espasa.

https://semiwiki.com/category/ip/risc-v/

CSUN . , (5 Paias
CALIFORNIA INDIE APPDEVELOPER
RN ee midynamic® R|SC-V Cores © ff brobman

COMP122

. Atrevido 423 with VPU

RISCV64GCV, Sv48 / 64-bit Core \
* Fast unaligned

* AXI/CHI

* Sv4s

* Linux Ready

R coon |
* Available extensions:
-“ “ “ E n - Bit Manipulation
1 - Single/Double
’ ’ 512 _
Crypto

——
'“ - Zifencei

eemtdynamtcs

CSUN

DR JEFF

| s &2 soFTwaRe
AT ee midynamic® R ISC-V Cores ©ef Drobman
COMP122
/4R N\

140 @

120 @

100 l

Outstanding »
misses

60

40

200

Comparison to other cores:

Atrevido 223

Atrevido 423

Retirement / Issue Width

. L
A 4
®
20 |+ A76 Power9
AX25 SCR7 us) IceLake vl
Ty .) .
-~ W ' <
" Boom
& & & & ®
2 3 4 5 6

DR JEFF

CSUN | (s &) soFTwaRe
S“::;;mzz"eemldynaml RISC-V Cores ©ef Drobman

COMP122 9.18.3

SEMIDYNAMICS

Deeper RISC-V pipeline plows through vector-scalar loops
by Don Dingee on 09-14-2023 at 10:00 am
Categories: IP, RISC-V, Semidynamics

Many modern processor performance benchmarks rely on as many as three levels
of cache staying continuously fed. Yet, new data-intensive applications like
multithreaded generative Al and 4K image processing often break conventional
caching, leaving the expensive execution units behind them stalled. A while back,
Semidynamics introduced us to their new highly customizable RISC-V core,
Atrevido, with its Gazillion memory retrieval technology designed to solve more

Vector-Scalar
/Z=aX+b
/=aX+Y

-z @emidynamic® RISC-V Cores

2016-2023
COMP122 91823

Some emerging use cases for a deeper RISC-V
pipeline

“We continuously get requests for new data types, and our answer is always yes,
we can add that with some engineering time,” Espasa points out. int4 and fp8
additions say a lot about the type of application they are seeing: simpler, less
training-intensive Al inference models, but hundreds or thousands of concurrent
threads. Consider something like a generative Al query server where users hit it
asynchronously with requests. One stream is no big deal, but 100 can overwhelm a
conventional caching scheme. Gazillion fetches help achieve a deeper RISC-V
pipeline scale not seen in other architectures.

There’s also the near-far imaging problem - having to blast through high frame
rates of 4K images looking for small-pixel fluctuations that may turn into targets
of interest. Most Al inference engines are good once regions of interest take
shape, but having to process the entire field of the image slows things down.
When we mentioned one of the popular Al inference IP providers and their 24-
core engine, Espasa blushed a bit. “Let’s just say we work with customers to adapt
Atrevido to what they need rather than telling them what it has to look like.”

DR JEFF

CSUN . S LIS SOFTWARE
sraTs vxIvaRSIT eem idynami R I S C‘V CO es © Jef Drobman

COMP122 9.18.93

Number of Vector Cores

Vector-Scalar \V7.|
Z=aX+Y

DLEN
¥ceresvaniusivieq v

ELEN=16 64 128 256 512
ELEN=32 128 256 512 1024
ELEN=64 256 512 1024 2048

€emidynamic®

CSUN, . B sorrwane
- @emidynamic RISC-V Cores

2016-2023
COMP122 9-18-3

Atrevido 423 + V16 Vector Unit

Atrevido 423-V8

TAGE |+|l-TLg|Instruction Cache pAR| |pebug

Vector-Scalar (4, 816 or 32KB)
e Jee PMU

RAS | | Decoder I

Y ¥ ¥ ¥
Z=aX+Y I Renamer |
Yy ¥ ¥ ¥

* ¥
Mem Issue Int Tssue Ssue Vector, FP
Issue Queue
¥ '

Integer Regs FP Regs

U 5 I 5 it
AGU || ALU || ALU | BR FPU

CRYPTO ‘

]
]
]
]
1
]
1
=
—p-TLg| DataCache |zcq E
)
I
]
]
L
5

(4, 8, 16 or 32KB)

vcore
ewe [V

12b/1024b

S\%Myw Gazzillion Unit
PMP

r

AXI/CHI

