DR JEFF
CALIFORNIA Im'SOFTWARE
STATE UNIVERSITY A L i

NORTHRIDGE COM P 122 © Jeff Drobman

2016-2022
Rev 10-4-23

CSUN

COMP122

ASSEMBLY Programming
X86 ISA

Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

Index

**x86 Intro = slide 3

**x86 CPU Models = slide 11
**x86 ISA =2 slide 23

**x86 Micro Arch - slide 52
**x86 Mult/Div = slide 59

< AVX (SIMD) = slide 65

**x86 Multi-core =2 slide 67
*Intel vs AMD -2 slide 75

**x86 Assembly Lang = slide 96
**x86: i8088 Data book = slide 98

DR JEFF
SOFTWARE
© Jeff Drobman

2016-2022

& DII:TJEFFE
o l 'SO WAR
e Computer Architecture e

2016-2022
COMP122

X86 Intro

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

- JEFF
=0 SOFTWARE

INDIE APPDEVELOPER
X © Jeff Drobman

2016-2022

“x86” refers to the ISA architecture that began back in 1978 with
the 18086 16-bit microprocessor. it still is used to refer to that ISA
through all the upgrades through Pentiums. Intel and AMD both
now have 2 ISA’s: a 32-bit (IA-32) and a 64-bit (IA-64). most PC’s
and all new Macs use x86—64 (I1A-64), but Apple will replace x86—
64 with ARMvS (64-bit) cores.

x86 1ncludes a 32-bit ISA and a 64-bit ISA, called "x86-32" and
"x86-64". there are any number of assembly languages supporting
those ISA's. "RISC" is a specific CPU architecture that all modern
CPU's use. It has a goal of single-cycle execution via deep
pipelines, a general register set, separate (Harvard style) L1 I and
D caches, and an ISA that restricts memory access to "Load" and

"Store".
v
I BOKE RE
x86-32 x36-64
3 2 58 ¥ 16 |

|A-32 |A-64

@M DR JEFF
Q SOFTWARE

© Jeff Drobman
2016-2022

COMP122
x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit

Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit) 286 i386

Design CISC

Type Register-memory

Encoding Variable (1 to 15 bytes)

Branching Condition code

Endianness Little

Page size 8086—-i286: None
i386, i486: 4 KB pages
PS5 Pentium: added 4 MB pages
(Legacy PAE: 4 KB—2 MB)
x86-64: added 1 GB pages

Extensions x87, IA-32, x86-64, MMX,

x86 is a family of instruction set architectures
initially developed by Intel based on the Intel
8086 microprocessor and its 8088 variant.
The 8086 was introduced in 1978 as a fully
16-bit extension of Intel's 8-bit 8080
microprocessor, with memory segmentation
as a solution for addressing more men

Y DR JEFF
CSUN 25 soFTWARE
. | B |V| P(S orrommoren
NORTHRIDGE

2016-2022
COMP122

¢ Designed and built by IBM (Boca Raton, FL) in 1981
** CPU: i8088 (i8086 with an 8-bit data bus)
¢ Speed: 4.77 MHz
** Memory — DRAM: 64KB (48KB soldered, 16KB socketed)
¢ Disk: 8 inch floppy — 2 drives (A:, B:)
s OS: MS/PC-DOS (derived from CP/M)
The IBM PC

. . . A
|

Ty

CSUN . D) sorrware
ChTomy X86 Histo ry SeEm———

2016-2022
COMP122

Q Heikki Kultala, M.Sc Computer Science, Tampere University of Technology ()
(2010)

Answered 9h ago

32-bit is NOT called x86.

There are tens of 32-bit architectures such as MIPS, ARM, PowerPC, SPARC which
are not called x86.

x86 is a term meaning any instruction set which derived from the instruction set of
Intel 8086 processor. It's successors were named 80186, 80286, 80386, 80486,
and were all compatible with the original 8086, capable of executing code made for
it. Later Intel also released 8086-compatible processors named Pentium , Celeron,
Core and Xeon but the name x86 had already stabilized to mean all processors
base don the instruction set family.

Of these, 8086, 80186 and 80286 were 16-bit processors. 80386 was a 32-bit
processor, with a new 32-bit operating mode. However, it still retained the original
16-bit mode and also added a thid mode, “virtual 86" mode which allowed running
16-bit programs under 32-bit operating system.

Later, 64-bit extension to x86, x86-64 was developed and implemented in AMD
K8 and also later intels processors. Also these 64-bit processors based on the
x86-64 architecture are called x86 processors

CSUN . D) sorrware
ChTomy X86 Histo ry SeEm———

2016-2022
COMP122

So, the correct question is: Why is the 64-bit x86 called x64?

Over 10 years later, when the 64-bit extension to x86 instruction set was released,
and Microsoft started porting later NT-derived windows to it, some official
technical name had to be selected for the version compiled for this architecture.
The specification came originally from amd, so some called it “amd64” whereas
“intel64" had meant Itanium. But Microsoft did not want to include name of one
company to the name they chose for the architecture, and also the name “x86-64"
which is later used had not stabilized yet as the common name for the architecture,
and also the dash character on “X86-64" name might problematic for some places
where the architecture name appears and had to be parsed by some code. So they
chose the name “x64", as 64-bit version of x86.

Even later, support for the Itanium architecture was dropped and support for 32-
and 64-bit ARM architectures were added to Windows. The 64-bit ARMvS8 is
typically called either A64 or Aarch64, Im not sure which one is the official
technical name for it in Windows.

So now, Windows has support for four architectures: 386 (“x86"), x86-64 ("x64),
32-bit ARMv7 , and 64-bit ARMvS.

So, "x64" currently only means one of these two 64-bit architectures currently
supported by Windows.

CSUN : B soFrware
X386 History
COMP122 Wikipedia —

In the past:

« Transmeta (discontinued its x86 line)
« Rise Technology (acquired by SiS, that sold its x86 (embedded) line to DM&P)

« IDT (Centaur Technology x86 division acquired by VIA)

« Cyrix (acquired by National Semiconductor)

« National Semiconductor (sold the x86 PC designs to VIA and later the x86 embedded designs to AMD)
« NexGen (acquired by AMD)

« Chips and Technologies (acquired by Intel) x86-processors for regular PCs
« |BM (discontinued its own x86 line) « Intel
« UMC (discontinued its x86 line) AMD
L]
« NEC (discontinued its x86 line
() => VIA « VIA
x86-processors for embedded designs only |edit] e Zhaoxin

« DM&P Electronics (continues SiS' Vortex86 line)

« ZF Micro ZFx86,['] Cx486DX SoC

RDC Semiconductors(®! 486SX compatible RISC core (R8610 and R8620)

a0486/°! open source FPGA implementation of the 486SX (currently targets the Terasic Altera DE2-115)

$80186!*! open source 80186 compatible FPGA implementation
Montage Jintide!%!

In the past:

« ALi (x86 products went to Nvidia through the ULi sale)

» Nvidia (M6117C - 386SX embedded microcontroller)

« SiS (sold its Vortex86 line to DM&P)

« Zet open source 80186 compatible FPGA implementation targeting the Xilinx ML403& and Altera DE1&

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@ DR JEFF
25| soFTWARE

INDIE APPDEVELOPER
X © Jeff Drobman

2016-2022

.u‘ TIRLTRLRTARREEY

e

The x86 architectures were based on &7
the Intel 8086 microprocessor chip,
initially released in 1978.

TR
Intel Core 2 Duo — an example of an
x86-compatible, 64-bit multicore
processor

EESRERRRIETESIOY
, . 1 . B |

AMD Athlon (early version) — a =
technically different but fully compatible
x86 implementation

CSUN : B3 soFrware
X86 Architecture
COMP122

x86 CPU Models

CSUN : Imnsgﬁﬁ&
Xx86 Evolution g

2016 2022
COI\/I P122

4-bit* 14004

8-bit* i8008 - i8080 —> i8085 - 16-bit* i8086
16-bit address » 20-24 bit address

16-bit* i80286 = 32-bit* i80386 = i80486 - i80586
- Pentium (32/64-bit)
24-bit address

40 bit address — 48 bit address

*word size is for DATA

[Note: the 1stgen IBM PC used a custom i8088 with an 8-bit data bus]

DR JEFF
SOFTWARE

cre i
INDIE APP DEVELOPER
. AMD vs Intel: CPU Families™ &
NORTHRIDGE L] 2016-2022

COMP122

Desktop Ryzen/Threadripper Core (10t gen)
Laptop Athlon Ice Lake
Gaming Threadripper Core Extreme

+Radeon

Server/Workstn Epyc Xeon

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Processor %

4004

8008

8080

8085

8086

8088

80286

180386

180486

Series .
Nomenclature

N/A
N/A

N/A

N/A

N/A

N/A

N/A

DX, SX, SL

DX, SX, DX2,
DX4, SL

x86 Timeline

Code
Name

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

“»

Production .

Date

1971 - Nov 15

1972 - April

1974 - April

1976 - March

1978 - June 8

1979 - June

1982 - Feb

1985 - 1990

1989 - 1992

Clock
Rate

740 kHz

200 kHz -
800 kHz

2 MHz -
3.125 MHz

3 MHz,
5 MHz,
6 MHz

10 MHz,
8 MHz,
4.77 MHz

8 MHz,
4.77 MHz

12 MHz,
10 MHz,
6 MHz

33 MHz,
25 MHz,
20 MHz,
16 MHz

25 MHz -
100 MHz

Socket ¢

DIP

DIP

DIP

DIP

DIP

DIP

DLPP

DLPP

Socket 1,
Socket 2,
Socket 3

Fabri- .
cation

10-
micron

10-
micron

6-micron

3-micron

3-micron

3-micron

1.5-
micron

1-15-
micron

1-0.6-
micron

@ DR JEFF
25| soFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Bus
Speed T

N/A
200 kHz

2 MHz

2 MHz

10 MHz,
8 MHz,
4.77 MHz

8 MHz,
4.77 MHz

12 MHz,
10 MHz,
6 MHz

33 MHz,
25 MHz,
20 MHz,
16 MHz

25 MHz -
50 MHz

CSUN : : B soFrware
Xx86 Timeline S

2016-2022
COMP12~

Processor ¢ SeTies B H e o~ s Lo s
Nomenclature Name Date Rate
P5, P54C,
) 65 MHz -
Intel Pentium | N/A P54CTB, 1993 - 1999
250 MHz
P54CS
Intel Pentium P55C, 120 MHz -
N/A 1996 - 1999
MMX Tillamook 300 MHz
Diamondville,
Z5xx, Z6XX, Pineview, 2008 - 20.09
N2xx, 2xx, 3xx, | Silverthome, | (@s Centrino 500 M
a z -
Intel Atom N4xx, D4xx, Lincroft, Atom) 213 GHz
D5xx, N5xx, Cedarview, | 2008-present '
D2xxx, N2xxx Medfield, (as Atom)
Clover Trail

DR JEFF

CSIJN . . ﬁ SOFTWARE
pmShronNs X8 6 Time | ine e
NORTHRIDGE 2016-2022
COMP12~
e Series 2 Code Production Clock
Nomenclature Name Date Rate
Bus Clock CPU Clock
Febliant 50 MH 65 MHz
Intel Pentium | N/A P54CTB, 1993 - 1999 88 MHZ 250 MHz
P54CS z
Intel Pentium P55C, - 120 MHz -
1996 - 1999 ol
MMX Tillamook 66 MHz 300 MHz
Diamondville,
Z5xX, Z6XX, Pineview, 2008 - 20_09
N2xx, 2xx, 3xx, | Silverthome, | (88 Centrino ggg m:z 500 MH
Z -
Intel Atom N4xx, D4xx, Lincroft, Atom) — MHZ’ e
D5xx, N5xx, Cedarview, | 2008-present o5 GT/Z’ '
D2xxx, N2xx | Medfield, (as Atom) b
Clover Trail

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel Celeron | 3xx, 4xx, 5xx

x86 Timeline

Xeon

- Celeron

Banias,

Cedar Mill,
Conroe,
Coppermine,
Covington,
Dothan,
Mendocino,
Northwood,
Prescott,
Tualatin,
Willamette,
Yonah,
Merom,
Penryn,
Arrandale,
Sandy
Bridge, Ivy
Bridge,
Haswell,
Broadwell,
Bay Trail-M,
Braswell,
Skylake

1998-present

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Intel Xeon

N3xxX, NSXXX,
N7XXx

Allendale,

Cascades,
Clovertown,
Conroe,
Cranford,
Dempsey,
Drake,
Dunnington,
Foster,
Gainestown,
Gallatin,
Harpertown,
Irwindale,
Kentsfield,
Nocona,
Paxuville,
Potomac,
Prestonia,
Sossaman,
Tanner,
Tigerton,
Tulsa,
Wolfdale,
Woodcrest

1998-present

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

x86 Timeline

DR JEFF

SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman

2016-2022

MP122 ., ,.
o - i3/i5
Arrandale,
Clarkdale,
Sandy
13-XXX, i3-2XXX, Bridge, Ivy
Intel Core i3 | i3-3xxx, i3-4xxx, | Bridge, 2010-present
iI3-61xx, i3-63xx | Haswell,
Skylake,
Kaby Lake,
Coffee Lake
Arrandale,
Clarkdale,
. .) Clarksfield,
15-7xX, 15-6xx, 15- A
)) Lynnfield,
2XXX, 15-3XxX, i5-
: 3 Sandy
4xxx, 15-64xx, i5-)
: : 3 Bridge, Ivy
Intel Core i5 | 65xx, i5-66xX, i5- Bridae 2009-present
74xx, i5-75xX, i5- ge:
)) Haswell,
76xx, i5-84xx, 15-
) Broadwell,
85xx, i5-86xx
Skylake,
Kaby Lake,

Coffee Lake

Intel Core i7

M

i7

i7-6xx, i7-7xx, i7-
8xx, i7-9xx, i7-
2XxX, i7-37xx, i7-
38xx, i7-47xx, i7-
48xx, i7-58xx, i7-
59xx, i7-67xx, i7-
68xx, i7-69xx, i7-
7700K

Bloomfield,

Nehalem,
Clarksfield,
Clarksfield
XM,
Lynnfield,
Sandy
Bridge,
Sandy
Bridge-E, Ivy
Bridge, Ivy
Bridge-E,
Haswell,
Haswell
Refresh,
Devil's
Canyon,
Broadwell,
Skylake,
Kaby Lake,
Coffee Lake

2008-present

Pentium M

7XX

Banias,

Dothan

2003 - 2008

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

x86 Timeline Generations

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Generation

1st

2nd

3rd (IA-32)

4th
(pipelining,
cache)

5th
(Superscalar)

x86

6th
(PAE, p-op
translation)

Enhanced
Platform

|

Introduction

1978

1982

1985

1989

1993

1994

1995

1995

1997

1997

1999

2000

Chronology of x86 Processors

Address space
Prominent CPU models Notable features
Linear | Virtual | Physical

Intel 8086, Intel 8088(1979) 16-bit ISA, IBM PC (8088), IBM PC/XT (8088)

ettt ot 16-bit NA 200t 8086-2 ISA, embedded (80186/80188
-Di - ,em e
NEC V20/v30(1983) ()
Intel 80286 and clones 30-bit | 24-bit protected mode, IBM PC XT 286, IBM PC AT
B e B 32-bit ISA, paging, IBM PS/2
(1991) » Paging,
Intel 80486
Cyrix Cx486S/DLC(1992) R . .
AMD pipelining, on-die x87 FPU (486DX), on-die cache
Am486(1993)/Am5x86(1995)
intel Perthim, Penthim szol S lar, 64-bit databus, faster FPU, MMX (Pentium MMX), APIC, SMP
rscalar, 64-bi . r L i) ,
MMX(1996) uperscalal atabus, (u)
NexGen Nx586 DI to mi hitect t Jation)
iscrete microarchitecture (u-op translation
AMD 5k86/KS5 (1996) (u-op
Cyrix Cx5x86
Cyrix dynamic execution
6x86/MX(1997)/MI11(1998)
. u-op translation, conditional move instructions, dynamic execution, speculative execution, 3-way
Intel Pentium Pro)
x86 superscalar, superscalar FPU, PAE, on-chip L2 cache
36-bit
Intel Pentium I, Pentium Il | 32-bit | 46-bit . ,)
(1999) (PAE) | on-package (Pentium Il) or on-die (Celeron) L2 Cache, SSE (Pentium Ill), SLOT 1, Socket 370
or SLOT 2 (Xeon
Celeron(1998), Xeon(1998) ()
bt g 32-bit 3DNow!, 3-level cache system (K6-Ill)
ow!, 3-level cache system
111(1999) ¥
AMD Athlon, Athlon
Alinaliz) 36-bit MMX+, 3DNow!+, doubl ed bus, Slot A or Socket A
+, ow!+, double-pum s, Slot A or Socke!
Duron(2000), + Coubie-pumped bu
Sempron(2004)
) CMS powered x86 platform processor, VLIW-128 core, on-die memory controller, on-die PCI
Transmeta Crusoe 32-bit

| bridge logic

DR JEFF

CSUN . . . L?W_JSOFTWARE
e X86-64 Timeline Generations e

2016-2022
AMD APU C, E and Z Series e s ot B AT
wer Vil
2011 (Bobcat) P
Intel Core i3, Core i5 and 36-bit
i Core i7 Internal Ring connection, decoded p-op cache, LGA 1155 socket.
x86- | 64-bit Extended
64 since 2001 (Sandy Bridge/Ivy Bridge)
AMD APU A Series :
e 48-bit AVX, Bulldozer based APU, Socket FM2 or Socket FM2+
(Bulidozer, Trinity and later)
2012 ‘ l
Intel Xeon Phi (Knights coprocessor OS powered PCI-E Card Formed coprocessor for XEON based system, Many Core
48-bit
Comer) : Chip, In-order P54C, very wide VPU (512-bit SSE), LRBni instructions (8x 64-bit)
S ol 48-bit SoC, game console and low power smart device processo
Vi r r
(Athlon, Sempron) @ P P
2013 ot Syt 36-bit SoC, low/ultra-low power smart device processor
(Atom, Celeron, Pentium) : L P
Intel Core i3, Core i5 and < :
: AVX2, FMA3, TSX, BMI1, and BMI2 instructions, LGA 1150 socket
Core i7 (Haswell/Broadwell)
Intel Broadwell-U 39-bit
2015 gl o o Lo, Lom SoC, on-chip Broadwell-U PCH-LP (Multi-chip modul
i7, Core M, Pentium, RS TR A (Mutkchip adulo)
Celeron)
Intel Skylake/Kaby
Lake/Cannon Lake g : > :
2015/2016 ; ; 46-bit AVX-512 (restricted to Cannon Lake-U and workstation/server variants of Skylake)
(Intel Core i3, Core i5, Core
i7)
Intel Xeon Phi (Knights . 5
2016 Landngt 48-bit Many-core CPU and coprocessor for Xeon systems, Airmont (Atom) core based
2016 i s Integrated FCH on die, SoC, AM4 socket
(AMD (Pro) A6/A8/A10/A12) 9 : :
AMD Ryzen Series/AMD . : : : :
2017 ;i AMD's implementation of SMT, on-chip multiple dies.
Epyc Series
48-bit
2017 e U Zhaoxin's first brand new x86-64 architecture
x -
5000, KH-20000)
2018/2019 Intel Sunny Cove (Ice Lake- Intel's first implementation of AVX-512 for the consumer segment. Addition of Vector Neural

UandY) ‘ Network Instructions

: £ sorrware
CSUN L)
. Xx86 Support C hi pS & efforshman

2016-2022
COMP122

Support chips [edit]

« Intel 8237: direct memory access (DMA) controller

« Intel 8251: universal synchronous/asynchronous receiver/transmitter at 19.2 kbit/s

« Intel 8253: programmable interval timer, 3x 16-bit max 10 MHz

« Intel 8255: programmable peripheral interface, 3x 8-bit I/O pins used for printer connection etc.
« Intel 8259: programmable interrupt controller

« Intel 8279: keyboard/display controller, scans a keyboard matrix and display matrix like 7-seg
¢ Intel 8282/8283: 8-bit latch

« Intel 8284: clock generator

« Intel 8286/8287: bidirectional 8-bit driver. In 1980 both Intel 18286/18287 (industrial grade) version
« Intel 8288: bus controller

« Intel 8289: bus arbiter

« NEC pPD765 or Intel 8272A: floppy controller!20]

DR JEFF

CSUN . Sgg};gﬁgE
AMD Packaging

2016-2022
COMP122

AMD motherboard’s don't have pins where the processor sits, instead they have
the holes that these pins go into. For example:

CSUN g DR JEFF

. gL i
Intel Packaging

2016-2022
COMP122

Intel processors have the pins on the motherboard, like this:

Therefore an Intel processor looks like this:
’4
f
s Ny 4
/)
/A /
g ’
{ 1.0
7%
' & !I {
/. f Y
A/) VIV 4
/ /
s 4
7 r‘!‘& 2’4
= l 200009
/. { 204 Y
(=] s AV VY
Teml 22192974
A

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

¥m DR JEFF
25| soFTwaRE

° INDIEAPPDEVELOPER
I e ‘ S © Jeff Drobman
2016-2022

, Joe Zbiciak X
Processor architect for ~20 years - 4y

If a 486 CPU was created with the modern chip technology (22nm
etc.), how little power would it take?

It would depend on what clock rate you ran it at, and a number of other
assumptions.

The original 486 had the following specs:

e 1.2 million transistors

e 1um process technology

5V Vpp
33MHz top clock rate 33MHz

4.7W max power consumption 4.7W

Let's suppose you merely shrunk that first-generation 1um 486 down to 14nm,
lowered the voltage down from 5V to 0.8V, and held clock rate constant at
33MHz.

You'd get an immediate 40X reduction just due to the lower voltage alone.

: DII;\’TJEFFE
. Imlso WAR
Computer Architecture

2016-2022
COMP122

X886 ISA

aran DR JEFF
CSUN 24| soFTware
INDIEAPPDEVELOPER
Chrony X886 |SA esrrommonen
NORTHRIDGE 2016‘2022

COMP122

Stack instructions |edit)

The x86 architecture has hardware support for an execution stack mechanism. Instructions such as push, pop, call and ret are used with the properly set up
stack to pass parameters, to allocate space for local data, and to save and restore call-return points. The ret size instruction is very useful for implementing space
efficient (and fast) calling conventions where the callee is responsible for reclaiming stack space occupied by parameters.

When setting up a stack frame to hold local data of a recursive procedure there are several choices; the high level enter instruction (introduced with the 80386)
takes a procedure-nesting-depth argument as well as a local size argument, and may be faster than more explicit manipulation of the registers (such as push bp ;
mov bp, sp ; sub sp, size). Whether it is faster or slower depends on the particular x86-processor implementation as well as the calling convention used by
the compiler, programmer or particular program code; most x86 code is intended to run on x86-processors from several manufacturers and on different technological
generations of processors, which implies highly varying microarchitectures and microcode solutions as well as varying gate- and transistor-level design choices.

The full range of addressing modes (including immediate and base+offset) even for instructions such as push and pop , makes direct usage of the stack for integer,
floating point and address data simple, as well as keeping the ABI specifications and mechanisms relatively simple compared to some RISC architectures (require
more explicit call stack details).

Integer ALU instructions |[edit)

x86 assembly has the standard mathematical operations, add , sub, mul, with idiv ;the logical operators and , or, xor , neg ; bitshift arithmetic and
logical, sal/sar, shl/ shr ;rotate with and without carry, rcl/ rcr, rol/ ror , a complement of BCD arithmetic instructions, aaa, aad , daa and
others.

Flags |edit)

The 8086 has a 16-bit flags register. Nine of these condition code flags are active, and indicate the current state of the processor: Carry flag (CF), Parity flag (PF),
Auxiliary carry flag (AF), Zero flag (ZF), Sign flag (SF), Trap flag (TF), Interrupt flag (IF), Direction flag (DF), and Overflow flag (OF). Also referred to as the status word,
the layout of the flags register is as follows:®]

Bit (15-12|11 |10 |9 |8 |7 |6 |6|4 (3|2 |1|0

Flag OF DF | IF TF SF|ZF| |AF| PF| |CF

CSUN . &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaTE UV R X8 6 Reg Isters ©ef Drobman

COMP122

16-bit [edit)

The original Intel 8086 and 8088 have fourteen 16-bit registers. Four of them (AX, BX, CX, DX) are general-purpose registers (GPRs), although each may have an
additional purpose; for example, only CX can be used as a counter with the /oop instruction. Each can be accessed as two separate bytes (thus BX's high byte can be
accessed as BH and low byte as BL). Two pointer registers have special roles: SP (stack pointer) points to the "top" of the stack, and BP (base pointer) is often used to
point at some other place in the stack, typically above the local variables (see frame pointer). The registers Sl, DI, BX and BP are address registers, and may also be
used for array indexing.

Four segment registers (CS, DS, SS and ES) are used to form a memory address. The FLAGS register contains flags such as carry flag, overflow flag and zero flag.
Finally, the instruction pointer (IP) points to the next instruction that will be fetched from memory and then executed; this register cannot be directly accessed (read or
written) by a program. 2]

The Intel 80186 and 80188 are essentially an upgraded 8086 or 8088 CPU, respectively, with on-chip peripherals added, and they have the same CPU registers as the
8086 and 8088 (in addition to interface registers for the peripherals).

The 8086, 8088, 80186, and 80188 can use an optional floating-point coprocessor, the 8087. The 8087 appears to the programmer as part of the CPU and adds eight
80-bit wide registers, st(0) to st(7), each of which can hold numeric data in one of seven formats: 32-, 64-, or 80-bit floating point, 16-, 32-, or 64-bit (binary) integer,
and 80-bit packed decimal integer.(61:5-6. $-13..5-15 |t 5150 has its own 16-bit status register accessible through the fntsw instruction, and it is not uncommon to simply
use some of its bits for branching by copying it into the normal FLAGS.2']

In the Intel 80286, to support protected mode, three special registers hold descriptor table addresses (GDTR, LDTR, IDTR), and a fourth task register (TR) is used for
task switching. The 80287 is the floating-point coprocessor for the 80286 and has the same registers as the 8087 with the same data formats.

CSUN . @)soFveane
R X386 Registers

COMP122 .

Intel 8086 registers

1 1 1.1 11 111100000000 0 0
9 8 7 6 5 4 3 2 109 8 7 6 5 4 3 2 1 of(biposiion)

Main registers
Y TP ——
LB B Ko s
DT T P R——
LB X o)
Index registers

0oo00 Source Index

bo0 B e

bose [m s

0000 [sakeon

Program counter

0000 [o P

Segment registers

D e 0000 casesegmen
C 5 0000 omsssonen
B 0000 swsemen
s 0000 susksegmen
Status register

EEEEEEENNEREREEHE -

CSUN . &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaTE UV R X8 6 Reg Isters ©ef Drobman

COMP122

Registers |edit)

Further information: X86 architecture § x86 registers

x86 processors have a collection of registers available to be used as stores for binary data. Collectivel
Each register has a special purpose in addition to what they can all do:

« AX multiply/divide, string load & store
« CX count for string operations & shifts
DX port address for IN and OUT

BX index register for MOVE

SP points to top of the stack

BP points to base of the stack frame
« Sl points to a source in stream operations
« DI points to a destination in stream operations

Along with the general registers there are additionally the:

« |P instruction pointer

« FLAGS

« segment registers (CS, DS, ES, FS, GS, SS) which determine where a 64k segment starts (no FS
« extra extension registers (MMX, 3DNow!, SSE, etc.) (Pentium & later only).

The IP register points to the memory offset of the next instruction in the code segment (it points to the
by the programmer directly.

The x86 registers can be used by using the MOV instructions. For example, in Intel syntax:

mov ax, 1234h ; copies the value 1234hex (4660d) into register AX

mov bx, ax ; copies the value of the AX register into the BX register

CSUN . B sorrware
X386 Registers
COMP122

Figure 2.17.1: The 80386 register set (COD Figure 2.36).

Hennessy & Patterson —

Starting with the 80386, the top eight registers were extended to 32 bits and could also be used as general-purpose registers.

Name Use
31 0
EAX GPRO
ECX GPR 1
EDX GPR 2
EBX GPR 3
ESP GPR 4
EBP GPR 5
ESI GPR 6
EDI GPR7
CS Code segment pointer
SS Stack segment pointer (top of stack)
DS Data segment pointer 0
ES Data segment pointer 1
FS Data segment pointer 2
GS Data segment pointer 3
EIP Instruction pointer (PC)
EFLAGS Condition codes

CSUN

DR JEFF

. gL i
e x86 Register Chart
NORTHRIDGE 2016‘2022
COMP122

zmMmo [ymmo (Mo][zmm1 [ymm1 (vv1] | ST(0)[MMO || ST(1) MM1 2| [Mswicrd| Ccr4 | </
zmm2 [yMM2 [z || zmm3 [YMM3 [xvM3]| | sT(2) [MM2 | 3] { cr1 || cr5 |
zMM4 [YMM4 []| ZMM5 - [YMM5 [XMMS] | ST(4) [MM4 | | { crR2 | cré |
ZMM6 [YMM6 [MM6 | ZMM7 [YMM7_[av7 || [75{;@7)[7@4944[7751(77)”_7M7M1 }]@mD:XEDxRDX i-PnDFHlPiSDAR‘ | crR3 | cr7 |
zMM8 [YMM8 [MM8]| ZMM9 [YMM9 [xMve || [rEPEBPRBP| [ZDIEDIRDI| [P EF RIP| | MXCSR| CRS |
zMM10 [YMM10[MM10)(zMM11 [ymMm1imid] | cw | Fp_ip|Fp_DP|Fp_cs| [ETSIES] RS [FFUSPESPIRSP) [CR9 |
zMM12 [YMM12 fvmi2)| zMM13 [YMM13 vvis]| | sw | CR10

(M14 iYMM14 [XMM14|” ZMM15 IYMM15 XMMlS]‘ ‘—TKN_-J . 8-bit register B 32-bit register [} 80-bit register . 256-bit register ICRLIJ AN

_\l\ e T) B 16-bit register [64-bit register] 128-bit register] 512-bit register = /
ZMMIGH’ZMMI%[ZMMlB](ZMM]quMM2q[ZMMZIIFZMM2%[ZMMZ% FP DSI LC?RVlZ}
Zmmzd| zamas| zmze] zuwar] zmzg] zmzs] zumad zwa] [ee_oeclFp_DPFP_IP| | CS || ss || DS | | GOTR | 1DTR | [DRO || DR6 | |CR13 |
| pr1 | DR7 | [CR14]
----------- | DR2 || DR8 | |[CR15]

m_ﬁSJ GFLAaS RFLA(:S 1 L
\ DR3 | DR9

| DR4 | DR10{DR12 | DR14 |
| DR5 || DR11|[DR13 | DR15

**8/16/32/64 bit basic registers

*128/256/512 bit MMX extended registers

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

X386 Registers

General
purpose

Floating
point

Registers

16-bit: 6 semi-dedicated
registers, BP and SP are not
general-purpose

32-bit: 8 GPRs, including EBP
and ESP

64-bit: 16 GPRs, including
RBP and RSP

16-bit: optional separate x87
FPU

32-bit: optional separate or
integrated x87 FPU, integrated
SSE2 units in later processors
64-bit: integrated x87 and
SSE2 units, later
implementations extended to
AVX2 and AVX512

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN . B sorrware
ChTomy X86 Re gi sters et

2016-2022
COMP122

Structure |edit)

General Purpose Registers (A, B, C and D)
64 56 48 40 32 24 16 8
R?X
E?X
72X
7H 7L

64-bit mode-only General Purpose Registers (R8, R9, R10, R11, R12, R13, R14, R15)
64 56 48 40 32 24 16 8

7D
W
B
Segment Registers (C,
D, S, E, Fand G)
16 8
7S

Pointer Registers (S and B)
64 56 48 40 32 24 16 8

R?P
E?P
7P
7PL

Note: The ?PL registers are only available in 64-bit mode.

CSUN .
X386 Registers

COMP122

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Index Registers (S and D)
64 56 48 40 32 24 16

Rl
E?I

Note: The ?7IL registers are only available in 64-bit mode.

Instruction Pointer Register (l)
64 56 48 40 32 24 16

RIP
EIP

71

7IL

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

X86 Instruction Formats

a. JE EIP + displacement

Hennessy & Patterson —

4 4 8
Jg | Cond- Displacement
tion
b. CALL
8 32
CALL Offset
c.MOV EBX, [EDI + 45]
6 A 8 8
e r/m :
MOV d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH |Reg
e. ADD EAX, #6765
4 3 1 32
ADD |Reg|w Immediate
f. TEST EDX, #42
7 1 8 32
TEST w Postbyte Immediate

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN : B3 sorrware
X86 Instructions e

2016-2022
COMP122

Hennessy & Patterson —

Figure 2.17.4: Some typical x86 instructions and their functions (COD Figure 2.39).

A list of frequent operations appears in the figure below. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel
PC)

Jje name ifequal(condition code) {EIP=name};
EIP-128 <=name <E[P+128
Jjmp name EIP=name
call name SP=SP-4: M[SP]=EIP+5; EIP=name;
movw EBX,[EDI+45] EBX=M[EDI+45]
push ESI SP=SP-4; M[SP]=ES]
pop EDI EDI=M[SP]; SP=SP+4
add EAX,{#6765 EAX=EAX+6765
test EDX.#42 Set condition code (flags) with EDX and 42
movs] MLEDIJ=M[ESI];:
EDI=EDI+4; ESI=ESI+4

CSUN : B sorrware
X86 Instructions ©ef Drobman
COMP122

Figure 2.17.5: Some typical operations on the x86 (COD Figure 2.40).

Hennessy & Patterson —

Many operations use register-memory format, where either the source or the destination may be memory and the other may be a
register or immediate operand.

T T

Control | Conditional and unconditional branches |

inz, jz Jump if condition to EIP + 8-bit offset; JNE (fordNZ), JE (for JZ) are
alternative names

jmp ‘ Unconditional jump—=8-hit or 16-bit offset J

call Subroutine call—16-bit offset; return address pushed onto stack \

ret Pops return address from stack and jumps to it J

lToop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX#0 |

Data transfer | Move data between registers or between register and memory ‘

move Move between two registers or between register and memory 1

push, pop Push source operand on stack; pop operand from stack top to a register J

es Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory |
format ‘

cmp Compare source and destination; register-memory format ‘

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill \

cbw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX ‘

test | Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix 7

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated {

lods Loads a byte, word, or doubleword of a string into the EAX register w\

CSUN B sorrware
sTATE Ny x86 O peran d S ©ef Drobman

COMP122 Hennessy & Patterson —

Figure 2.17.2: Instruction types for the arithmetic, logical, and data transfer instructions (COD Figure
2.37).

The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode. Immediates may be 8, 16, or
32 bits in length; a register is any one of the 14 major registers in the figure above (not EIP or EFLAGS).

Source/destination operand type Second source operand

Register Regivster
Register Immediate
Register Memory
Memory Register
Memory Immediate

CSUN : B sorrware
e X86 Addressing Modes

COMP122
Addressing modes for 16-bit x86 processors can be summarized by the formula:{'€117]
CS:
DS: BX SI :
+ + displacement
SS BP DI
ES:

Addressing modes for 32-bit x86 processors,!'®] and for 32-bit code on 64-bit x86 processors, ¢

EAX (B—)
EAX
CS: EBX
EBX
DS: ECX 1
ECX
SS: EDX 2 .
+ EDX | = + displacement
ES: ESP 4
EBP
FS: EBP 8
ESI
GS: ESI
EDI \ | EDT |)

Addressing modes for 64-bit code on 64-bit x86 processors can be summarized by the formula:

()

FS
GS

GPR| = GPR | *

GO = b =

> + displacement

CSUN : B8 soFrware

INDIE APPDEVELOPER
e x86 Instructions
NORTHRIDGE 2016‘2022

COMP122 Hennessy & Patterson —

Figure 2.17.3: x86 32-bit addressing modes with register restrictions and the equivalent MIPS code
(COD Figure 2.38).

The Base plus Scaled Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to
turn an index in a register into a byte address (see COD Figures 2.25 (MIPS assembly code of the procedure swap) and 2.27 (MIPS
assembly version of procedure sort)). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor of
0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent
mode would need two more instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address
with the base register $s1. (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are
essentially identical and we combine them here.)

Register
Description restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP | 1w $s0,0($s1)
Based mode with 8- or 32-bit Address is contents of base register plus Not ESP lw$s0,100($s1) # <= 16-bit
displacement displacement. #displacement
Base plus scaled index The address is Base: any GPR | mul $t0,3$s2.,4
Base + (25 x |ndex) Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,0(%t0)
Base plus scaled index with The address is Base: any GPR | mul $t0,%$s2,.4
8- or 32-bit displacement Base + (25" x Index) + displacement Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $50,100($t0) #<=16-bit
displacement

CSUN : B8 sorrware
X386 Segmentation e

2016-2022
COMP122

Segmentation [edit)
See also: x86 memory segmentation
There are also three 16-bit segment registers (see figure) that allow the 8086 CPU to access one megabyte of memory in an unusual way. Rather than concatenating
the segment register with the address register, as in most processors whose address space exceeds their register size, the 8086 shifts the 16-bit segment only four
bits left before adding it to the 16-bit offset (16xsegment + offset), therefore producing a 20-bit external (or effective or physical) address from the 32-bit segment:offset
pair. As a result, each external address can be referred to by 2'2 = 4096 different segment:offset pairs.
0110 1000 1000 0111 0000 Segment, 16 bits, shifted 4 bits left (or multiplied by 0x10)
+ 0011 0100 1010 1001 Offset, 16 bits

0110 1011 1101 0001 1001 Address, 20 bits

Although considered complicated and cumbersome by many programmers, this scheme also has advantages; a small program (less than 64 KB) can be loaded
starting at a fixed offset (such as 0000) in its own segment, avoiding the need for relocation, with at most 15 bytes of alignment waste.

Compilers for the 8086 family commonly support two types of pointer, near and far. Near pointers are 16-bit offsets implicitly associated with the program's code or
data segment and so can be used only within parts of a program small enough to fit in one segment. Far pointers are 32-bit segment:offset pairs resolving to 20-bit
external addresses. Some compilers also support huge pointers, which are like far pointers except that pointer arithmetic on a huge pointer treats it as a linear 20-bit
pointer, while pointer arithmetic on a far pointer wraps around within its 16-bit offset without touching the segment part of the address.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

X86 Segmentation

@) DR JEFF
IQISOFTWARE

© Jeff Drobman
2016-2022

Four segment

registers in BiU

ES [

CS
SS
DS

e vy -

<
(=3

=]
L=

L=
=]

Segment rogsters hold
the upper 16 bits of the
starting addresses of
four memory segments
that BOSS |s working with
ol arry particular tirme.

64
e 50000 H 1

Physical
addross
FFFFFH

TFFFF H f
i

&
e 70000 H 1

SFFFFHT

K

IFFFF H I |

Gk

-5 30000 H

|
ZFEFF H T

O4m

Memory

2 Exdia
- segmeant]

iy P

SN

Stack

segment
S8

Code
segment
c3

Dats
segment
o8

e 20000 H 1

Mr————~—

< Highast addroes

= e Top ol exlta sagment (ES)

4 «— Botlom of axtra sagment (ES)

«— Top of stack seqgment (SS)

<— Botlom of stack ssgment (SS)
<+— Top of code ssgment (CS)

< Boltom of code segment (C3)

o Top of data segment (DS)

<+— Botiom of da sogment (DS}

One way of positioning four 64k byte segments within the
IM byte memory space of an 8086

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

X386 Organization

-
N

o

/e

Simplified block diagram over Intel 8088 (a variant of 8086); 1=main
registers; 2=segment registers and IP; 3=address adder; 4=internal
address bus, 5=instruction queue; 6=control unit (very simplified!); 7=bus
interface; 8=internal databus; 9=ALU; 10/11/12=external
address/data/control bus.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN
x86 Performance

COMP122 CISC

@ DR JEFF
25| soFTwWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Execution times for typical instructions (in clock cycles)'?]

register- register register- memory- memory-

Instruction | register immediate memory register immediate

mov | 2 4 | 8+EA | 9+EA | 104EA
ALU 3 4 9+EA, 16+EA, 174EA
jump register = 11 ; label =2 15 ; condition,label = 16
integer 70~160 (depending on operand data as well as size)
multiply including any EA
integer | 80~190 (depending on operand data as well as size)
divide including any EA

« EA =time to compute effective address, ranging from 5 to 12 cycles.

« Timings are best case, depending on prefetch status, instruction alignment, and other factors.

Xx86 Modes

2016-2022
COMP122

Execution modes |edit]

Further information: X86 architecture

The x86 processors support five modes of operation for x86 code, Real Mode, Protected Mode, Long Mode, Virtual 86 Mode, and System Management Mode, in
which some instructions are available and others are not. A 16-bit subset of instructions are available on the 16-bit x86 processors, which are the 8086, 8088, 80186,
80188, and 80286. These instructions are available in real mode on all x86 processors, and in 16-bit protected mode (80286 onwards), additional instructions relating
to protected mode are available. On the 80386 and later, 32-bit instructions (including later extensions) are also available in all modes, including real mode; on these
CPUs, V86 mode and 32-bit protected mode are added, with additional instructions provided in these modes to manage their features. SMM, with some of its own
special instructions, is available on some Intel i386SL, i486 and later CPUs. Finally, in long mode (AMD Opteron onwards), 64-bit instructions, and more registers, are
also available. The instruction set is similar in each mode but memory addressing and word size vary, requiring different programming strategies.

The modes in which x86 code can be executed in are:

« Real mode (16-bit)

« Protected mode (16-bit and 32-bit)
« Long mode (64-bit)

« Virtual 8086 mode (16-bit)

« System Management Mode (16-bit)

Switching modes | edit)

The processor runs in real mode immediately after power on, so an operating system kernel, or other program, must explicitly switch to another mode if it wishes to run
in anything but real mode. Switching modes is accomplished by modifying certain bits of the processor's control registers after some preparation, and some additional
setup may be required after the switch.

CSUN Bl sorrware
T X886 |SA O eff Brobman

2016-2022
COMP122 Intel, AMD, VIA

4. Instruction tables

Lists of instruction latencies, throughputs and micro-operation breakdowns for Intel, AMD,
and VIA CPUs

By Agner Fog. Technical University of Denmark.
Copyright © 1996 — 2021. Last updated 2021-03-22.

Introduction
This is the fourth in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux, and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86 platforms.

3. The microarchitecture of Intel, AMD, and VIA CPUs: An optimization guide for assembly
programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel, AMD, and VIA CPUs.

5. Calling conventions for different C++ compilers and operating systems.

= DR JEFF
CSUN l ISOFTWARE
R X8 6 | S A Jepaian

2016-2022

COMP122
Instruction sets
Explanation of instruction sets for x86 processors
x86 This is the name of the common instruction set, supported by all processors in
this lineage.
80186 This is the first extension to the x86 instruction set. New integer instructions:

PUSH i, PUSHA, POPA, IMUL r,r,i, BOUND, ENTER, LEAVE, shifts and rotates
by immediate # 1.

80286 System instructions for 16-bit protected mode.

80386 The eight general purpose registers are extended from 16 to 32 bits. 32-bit
addressing. 32-bit protected mode. Scaled index addressing. MOVZX, MOVSX,
IMUL r,r, SHLD, SHRD, BT, BTR, BTS, BTC, BSF, BSR, SETcc.

80486 BSWAP. Later versions have CPUID.

x87 This is the floating point instruction set. Supported when a 8087 or later
coprocessor is present. Some 486 processors and all processors since Pentium/
K5 have built-in support for floating point instructions without the need for a
COprocessor.
80287 FSTSW AX

80387 FPREM1, FSIN, FCOS, FSINCOS.

DR JEFF

CSUN 25 soFTwARE
T X886 |SA & i Brobman
NORTHRIDGE 2016—2022

COMP122 MMX

Pentium RDTSC, RDPMC.

PPro Conditional move (CMOV, FCMOV) and fast floating point compare (FCOMI)
instructions introduced in Pentium Pro. These instructions are not supported in
Pentium MMX, but are supported in all processors with SSE and later.

MMX Integer vector instructions with packed 8, 16 and 32-bit integers in the 64-bit
MMX registers MMO - MM7, which are aliased upon the floating point stack
registers ST(0) - ST(7).

SSE Single precision floating point scalar and vector instructions in the new 128-bit
XMM registers XMMO - XMM7. PREFETCH, SFENCE, FXSAVE, FXRSTOR,
MOVNTQ, MOVNTPS. The use of XMM registers requires operating system
support.

SSE2 Double precision floating point scalar and vector instructions in the 128-bit XMM
registers XMMO - XMM7. 64-bit integer arithmetics in the MMX registers. Integer
vector instructions with packed 8, 16, 32 and 64-bit integers in the XMM
registers. MOVNTI, MOVNTPD, PAUSE, LFENCE, MFENCE.

SSE3 FISTTP, LDDQU, MOVDDUP, MOVSHDUP, MOVSLDUP, ADDSUBPS,
ADDSUPPD, HADDPS, HADDPD, HSUBPS, HSUBPD.

SSSE3 (Supplementary SSE3): PSHUFB, PHADDW, PHADDSW, PHADDD,
PMADDUBSW, PHSUBW, PHSUBSW, PHSUBD, PSIGNB, PSIGNW, PSIGND,
PMULHRSW, PABSB, PABSW, PABSD, PALIGNR.

DR JEFF

CSUN 238 soFTwARE
~ - INDIEAPPDEVELOPER

ChromNn X8 6 | S A oesrommoren
ORTHRIDGE

N 2016-2022
COMP122 AVX2

AVX2 Integer vector instructions are available in 256-bit versions. Furthermore, the
following instructions are added in AVX2: ANDN, BEXTR, BLSI, BLSMSK,
BLSR, BZHI, INVPCID, LZCNT, MULX, PEXT, PDEP, RORX, SARX, SHLX,
SHRX, TZCNT, VBROADCASTI128, VBROADCASTSS, VBROADCASTSD,
VEXTRACTI128, VGATHERDPD, VGATHERQPD, VGATHERDPS,
VGATHERQPS, VPGATHERDD, VPGATHERQD, VPGATHERDQ,
VPGATHERQQ, VINSERTI128, VPERM2I128, VPERMD, VPERMPD,
VPERMPS, VPERMQ, VPMASKMOVD, VPMASKMOVQ, VPSLLVD, VPSLLVQ,
VPSRAVD, VPSRLVD, VPSRLVAQ.

FMA3 (FMA): Fused multiply and add instructions: VFMADDxxxPD, VFMADDxxxPS,
VFMADDxxxSD, VFMADDxxxSS, VFMADDSUBxxxPD, VFMADDSUBxxxPS,
VFMSUBADDxxxPD, VFMSUBADDxxxPS, VFMSUBxxxPD, VFMSUBxxxPS,
VFMSUBxxxSD, VFMSUBxxxSS, VFNMADDxxxPD, VFNMADDxxPS,
VFNMADDxxxSD, VFNMADDxxxSS, VFNMSUBxxxPD, VFNMSUBxxxPS,
VFNMSUBxxxSD, VFNMSUBxxxSS.

FMA4 Same as Intel FMA, but with 4 different operands according to a preliminary Intel
specification which is now supported only by some AMD processors. Intel's FMA

specification has later been changed to FMAS3, which is now also supported by
AMD.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

64 bit

DR JEFF

252 soFTwARE
X86 |SA Jepaian
2016-2022

x64

This instruction set is called x86-64, x64, AMD64 or EM64T. It defines a new 64-
bit mode with 64-bit addressing and the following extensions: The general
purpose registers are extended to 64 bits, and the number of general purpose
reqgisters is extended from eight to sixteen. The number of XMM registers is also
extended from eight to sixteen, but the number of MMX and ST registers is still
eight. Data can be addressed relative to the instruction pointer. There is no way
to get access to these extensions in 32-bit mode

Most instructions that involve segmentation are not available in 64 bit mode.
Direct far jumps and calls are not allowed, but indirect far jumps, indirect far calls
and far returns are allowed. These are used in system code for switching mode.
Segment registers DS, ES, and SS cannot be used. The FS and GS segments
and segment prefixes are available in 64 bit mode and are used for addressing
thread environment blocks and processor environment blocks

CSUN . @) soroware
CALIFORNIA INDIEAPPDEVELOPER
srATR DR X8 6 | SA EVO I ution ©ef Drobman

COMP122 1978-2011 Hennessy & Patterson —

Evolution of the Intel x86

ARM and MIPS were the vision of single small groups in 1985; the pieces of these architectures fit nicely together, and the whole
architecture can be described succinctly. Such is not the case for the x86; it is the product of several independent groups who evolved the
architecture over 35 years, adding new features to the original instruction set as someone might add clothing to a packed bag. Here are
important x86 milestones.

e 1978: The Intel 8086 architecture was announced as an assembly language—compatible extension of the then successful Intel 8080,
an 8-bit microprocessor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide. Unlike MIPS, the registers have
dedicated uses, and hence the 8086 is not considered a general-purpose register architecture.

General-purpose register (GPR): A register that can be used for addresses or for data with virtually any instruction.

e 1980: The Intel 8087 floating-point coprocessor is announced. This architecture extends the 8086 with about 60 floating-point
instructions. Instead of using registers, it relies on a stack (see COD Section 2.21 (Historical perspective and further reading) and COD
Section 3.7 (Real Stuff: Streaming SIMD extensions and advanced vector extensions in x86)).

e 1982: The 80286 extended the 8086 architecture by increasing the address space to 24 bits, by creating an elaborate memory-
mapping and protection model (see COD Chapter 5 (Large and Fast: Exploiting Memory Hierarchy)), and by adding a few instructions
to round out the instruction set and to manipulate the protection model.

e 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a 32-bit architecture with 32-bit registers and a 32-bit
address space, the 80386 added new addressing modes and additional operations. The added instructions make the 80386 nearly a
general-purpose register machine. The 80386 also added paging support in addition to segmented addressing (see COD Chapter 5
(Large and Fast: Exploiting Memory Hierarchy)). Like the 80286, the 80386 has a mode to execute 8086 programs without change.

e 1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro in 1995 were aimed at higher performance, with only
four instructions added to the user-visible instruction set: three to help with multiprocessing (COD Chapter 6 (Parallel Processor from
Client to Cloud)) and a conditional move instruction.

CSUN .) sormnne
CALIFORNIA INDIEAPPDEVELOPER
srATR DR X8 6 | SA EVO I ution ©ef Drobman

COMP122 1978-2011 Hennessy & Patterson —

e 1997: After the Pentium and Pentium Pro were shipping, Intel announced that it would expand the Pentium and the Pentium Pro
architectures with MMX (Multi Media Extensions). This new set of 57 instructions uses the floating-point stack to accelerate
multimedia and communication applications. MMX instructions typically operate on multiple short data elements at a time, in the
tradition of single instruction, multiple data (SIMD) architectures (see COD Chapter 6 (Parallel Processor from Client to Cloud)).
Pentium Il did not introduce any new instructions.

e 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD Extensions) as part of Pentium Ill. The primary changes were
to add eight separate registers, double their width to 128 bits, and add a single precision floating-point data type. Hence, four 32-bit
floating-point operations can be performed in parallel. To improve memory performance, SSE includes cache prefetch instructions
plus streaming store instructions that bypass the caches and write directly to memory.

e 2001: Intel added yet another 144 instructions, this time labeled SSE2. The new data type is double precision arithmetic, which allows
pairs of 64-bit floating-point operations in parallel. Almost all of these 144 instructions are versions of existing MMX and SSE
instructions that operate on 64 bits of data in parallel. Not only does this change enable more multimedia operations; it gives the
compiler a different target for floating-point operations than the unique stack architecture. Compilers can choose to use the eight SSE
registers as floating-point registers like those found in other computers. This change boosted the floating-point performance of the
Pentium 4, the first microprocessor to include SSE2 instructions.

e 2003: A company other than Intel enhanced the x86 architecture this time. AMD announced a set of architectural extensions to
increase the address space from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space in 1985 with the 80386,
AMD64 widens all registers to 64 bits. It also increases the number of registers to 16 and increases the number of 128-bit SSE
registers to 16. The primary ISA change comes from adding a new mode called long mode that redefines the execution of all x86
instructions with 64-bit addresses and data. To address the larger number of registers, it adds a new prefix to instructions. Depending
how you count, long mode also adds four to ten new instructions and drops 27 old ones. PC-relative data addressing is another
extension. AMD64 still has a mode that is identical to x86 (legacy mode) plus a mode that restricts user programs to x86 but allows
operating systems to use AMD64 (compatibility mode). These modes allow a more graceful transition to 64-bit addressing than the
HP/Intel IA-64 architecture.

CSUN : B8 soFrware
. X886 ISA Evolution & ifforshmn

2016-2022
COMP122 1978-2011 Hennessy & Patterson —

e 2004 Intel capitulates and embraces AMD64, relabeling it Extended Memory 64 Technology (EM64T). The major difference is that
Intel added a 128-bit atomic compare and swap instruction, which probably should have been included in AMD64. At the same time,
Intel announced another generation of media extensions. SSE3 adds 13 instructions to support complex arithmetic, graphics
operations on arrays of structures, video encoding, floating-point conversion, and thread synchronization (see COD Section 2.11
(Parallelism and instructions: Synchronization)). AMD added SSE3 in subsequent chips and the missing atomic swap instruction to
AMD64 to maintain binary compatibility with Intel.

e 2006: Intel announces 54 new instructions as part of the SSE4 instruction set extensions. These extensions perform tweaks like sum
of absolute differences, dot products for arrays of structures, sign or zero extension of narrow data to wider sizes, population count,
and so on. They also added support for virtual machines (see COD Chapter 5 (Large and Fast: Exploiting Memory Hierarchy)).

e 2007: AMD announces 170 instructions as part of SSES, including 46 instructions of the base instruction set that adds three operand
instructions like MIPS.

e 2011: Intel ships the Advanced Vector Extension that expands the SSE register width from 128 to 256 bits, thereby redefining about
250 instructions and adding 128 new instructions.

his history illustrates the impact of the "golden handcuffs" of compatibility on the x86, as the existing software base at each step was too
mportant to jeopardize with significant architectural changes.

Golden Handcuffs of x86 compatibility

X86 Instruction Sizes o o

0 Andrey Gazibarov, System programmer and moderate SW fan since
1984

The reason fot this is the existence of instruction prefixes: special opcodes that are
not instructions but modify the execution of the next instruction. 18086 has two
types of prefixes and no limit on their number and sequence.

Otherwise, the longest meaningfull instruction is 8 bytes, e.g.

1 FO 26 81 80 1234 5678
2 LOCK ADD [ES:BX+SI+1234],5678

Without anything new in the encoding scheme, 180286 imposed an 11-byte limit on
instructions. Such length may be reached only if redundant prefixes are present. If
exceeded, a general protection exception is raised.

X86 Instruction Sizes o o

0 Andrey Gazibarov, System programmer and moderate SW fan since
1984

180386 introduced two additional prefixes, 32-bit offsets and immediates and a
second address byte. Thus the theoretical maximum length of an instruction
became 15 bytes.

i .16p
2 FO 67 26 66 81 84 1E 12345678 9ABCDEFO
3 LOCK ADD [ES:EBX+ESI+12345678],9ABCDEF@

The imposed limit is 15 bytes as well.

The REX, VEX and EVEX encoding schemes introduced not only new sets of
prefixes, but also limits on presence and ordering of other prefixes. Incorrect usage
raises the undefined instruction exception.

The limit of 15 bytes still stays.

e X86 Micro Architecture

2016-2022
COMP122

The microarchitecture of Intel, AMD, and
VIA CPUs

An optimization guide for assembly programmers and
compiler makers

By Agner Fog. Technical University of Denmark.
Copyright © 1996 - 2021. Last updated 2021-03-22.

e X86 Micro Architecture

2016-2022
COMP122

3 Branch prediction (all processors)

The pipeline in a modern microprocessor contains many stages, including instruction fetch,
decoding, register allocation and renaming, pop reordering, execution, and retirement.
Handling instructions in a pipelined manner allows the microprocessor to do many things at
the same time. While one instruction is being executed, the next instructions are being
fetched and decoded. The biggest problem with pipelining is branches in the code. For
example, a conditional jump allows the instruction flow to go in any of two directions. If there
is only one pipeline, then the microprocessor does not know which of the two branches to
feed into the pipeline until the branch instruction has been executed. The longer the
pipeline, the more time does the microprocessor waste if it does not know which branch to
feed into the pipeline.

The microarchitecture tries to overcome this problem by feeding the most probable branch
into the pipeline and execute it speculatively. Speculative execution means that the
instructions are decoded and executed, but the results are not retired into the permanent
register file, and memory writes are pending until the branch instruction is finally resolved. If
it turns out that the guess was wrong and the wrong branch was executed speculatively,
then the pipeline is flushed, the results of the speculative execution are discarded and the
other branch is fed into the pipeline. This is called a branch misprediction, and the result is
that several clock cycles are wasted. The number of wasted clock cycles is approximately
equal to the length of the pipeline.

The designers are inventing more and more sophisticated mechanisms for predicting which
way a branch will go, in order to minimize the frequency of branch mispredictions. The

CSUN . . B8 e
e X86 Micro Architecture

2016-2022
COMP122

AMD
Family Model
Microarchitecture number number

Processor name |Code name (hex) |(hex)
AMD K7 Athlon 6 6
AMD K8 Opteron F 5
AMD K10 Opteron 10 2
AMD Bulldozer Bulldozer, Zambezi 15 1
AMD Piledriver Piledriver 15 2
AMD Steamroller Steamroller, Kaveri 15 30
AMD Excavator Bristol Ridge 15 65
AMD Ryzen Zen 1 17 1
AMD Ryzen 3700 Zen 2 17 71
AMD Ryzen 5000 Zen 3 19 21
AMD Bobcat Bobcat 14 1
AMD Kabini Jaguar 16 0

DR JEFF

CSUN . . SOFTWARE
e x86 Micro Architecture o i
COMP122 intel
Family Model
Microarchitecture number number

Processor name |Code name (hex) |(hex) (

Intel Pentium P5 5" 2

Intel Pentium MMX P5 5" 4

Intel Pentium Il P6 6 6

Intel Pentium llI P6 6 7

Intel Pentium 4 Netburst F 2z

Intel Pentium 4 EM64T |Netburst, Prescott F 4

Intel Pentium M Dothan 6 D

Intel Core Duo Yonah 6 E

Intel Core 2 (65 nm) Merom 6 =

Intel Core 2 (45 nm) Wolfdale 6 17

Intel Core i7 Nehalem 6 1A

e X86 Micro Architecture

2016-2022
COMP122

Intel
Family Model
Microarchitecture Inumber number

Processor name Code name (hex) |(hex) (
Intel Pentium P5 5 2
Intel Pentium MMX P5 5 4
Intel Pentium Il P6 6 6
Intel Pentium Il P6 6 7
Intel Pentium 4 Netburst F 2
Intel Pentium 4 EM64T |Netburst, Prescott F 4
Intel Pentium M Dothan 6 D
Intel Core Duo Yonah 6 E
Intel Core 2 (65 nm) Merom 6 F
Intel Core 2 (45 nm) Wolfdale 6 17
Intel Core i7 Nehalem 6 1A
Intel 2nd gen. Core Sandy Bridge 6 2A
Intel 3rd gen. Core lvy Bridge 6 3A
Intel 4th gen. Core Haswell 6 3C
Intel 5th gen. Core Broadwell 6 56
Intel 6th gen. Core Skylake 6 5E
Intel 7th gen. Core Skylake-X 6 55
Intel 9th gen. Core Coffee Lake 6 9E
Intel 11th gen. Core Tiger Lake 6 8C

CSUN B sorrware
sTATE Ny Interru ptS on xX86 ©ef Drobman

COMP122 _m
Torvalds, however, doesn't see it that way. He

wrote:

The AMD version is essentially "Fix known

bugs in the exception handling definition."

The Intel version is basically "Yeah, the protected mode 80286

exception handling was bad, then 386 made it odder with the 32-bit

extensions, and then syscall/sysenter made everything worse, and then

the x86-64 extensions introduced even more problems. So let's add a

mode bit where all the crap goes away."

In contrast, the AMD one is basically a minimal effort to fix actual

fundamental problems with all that legacy-induced crap that is nasty to

work around and that has caused issues.

CSUN B soFrware
Interrupts on x86 e

2016-2022
COMP122 _m

So, what are these problems? They are hidden with the x86's architecture's

Interrupt Descriptor Table|(IDT). This is a data structure that implements an

interrupt vector table. It cgmes, unfortunately, with numerous exception

problems. | These, according to Torvalds, include:

o |IDT itself is a horrible nasty format and you shouldn't have to parse
memory in odd ways to handle exceptions. It was fundamentally bad from
the 80286 beginnings, it got a tiny bit harder to parse for 32-bit, and it
arguably got much worse in x86-64.

e The %rsp general-purpose register is not being restored properly by

return-to-user mode.

» Delayed debug traps into supervisor mode.

o Several bad exception nesting problems: Non-Maskable Interrupts (NMI),

machine checks, and STl-shadow handling at the very least).

« Various atomicity problems with gsbase (swapgs) and stack pointer
switching

« Several different exception stack layouts, and literally hundreds of different

entry points for exceptions, interrupts and system calls (and that's not even

CSUN : 8 sorrware
sTATE U Section © Jeff Drobman

COMP122 2016-2022

Mult/Div

CSUN : &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
R x86 Mult / Div © ffDrobman

COMP122

Fog

How many machine cycles does it take for a modern 64-bit
processor to divide 64- bit numbers?

Joe Zbiciak, Developed practical algorithms actually used in production. ®

<

Answered 2h ago

It varies widely, and it could be data dependent.

If you're truly curious, you can look up much more detailed answers for x86 in Agner
Fog's optimization resources. 7 You'll find very different numbers for different
generations of Intel, AMD, Via, and other processors.

For ARM Neoverse N1, ARM offers an optimization guide (7' with similar information. On
N1, SDIV and UDIV take from 5 to 20 cycles with 64-bit arguments. ARM notes that
N1's divide can early-exit depending on its arguments.

Note that | only looked up integer divide. Floating point divide has different
characteristics than integer divide. Some microarchitectures use a converging-divide
algorithm. For example, AMD uses Goldschmidt division, (7' in many of its
microarchitectures. Others use iterative algorithms similar to integer divide.

CSUN . . .) sorrware
-
Multi o |y & Divide Oetf Drohman

2016-2022

COMP122
MULTIPLY
¢ Unsigned only
¢ First convert negative numbers (2sC) — NEG op
s Compute result sign: 0 if both signs same, 1 else (not=)
s Complement result if sign is negative — NEG op
s Other MPUs use signed multiply (2sC) via “Booth’s Algorithm”
DIVIDE

** No hardware, no instruction
¢ Create subroutine (may find ones in asm library)
s Compute
= Long division
= Non-restoring division
= |terative subtraction (very slow)
% Use tricks
= Divide by 2 or any 2": right SHIFT by n
= Divide by 10: convert to BCD, then right SHIFT by 4 (reconvert to binary)
= Divide by 5: divide by 10, then multiply by 2 (by shifting after conv. Bin)

CSUN : B sorrware
sTATEUNIVERS 7 Xx86 Mu |t/ Div © e brobmn
COMP122

How many machine cycles does it take for a modern 64-bit
processor to divide 64- bit numbers?

Integer instructions

Instruction Operands Ops Latency |
i
MUL, IMUL ri6/m16 3 3
MUL, IMUL r32/m32 3 4
IMUL r16,r16/m16 2 3
IMUL r32,r32/m32 2 4
IMUL r16,(r16),i 2 4
IMUL r32,(r32),i 2 5
IMUL ri6,m16,i 3
IMUL r32,m32,i 3
DIV r8/m8 32 24

CSUN : B8 soFrware
i x86 Mult/Div
MP

How many machine cycles does it take for a modern 64-bit
processor to divide 64- bit numbers?

Integer instructions

Instruction Operands Ops Latency |
i
AMD K7
DIV r16/m16 47 24
DIV r32/m32 79 40
IDIV r8 41 17
IDIV r16 56 25
IDIV r32 88 41
IDIV m38 42 17
IDIV m16 57 25
IDIV m32 89 41

CSUN c o o . iy ‘Isgll:TJv[\-:/Z;E
Division Algorithms g

COMP122

2016-2022

Lauri's blog Posts N\ Floating Point Can be imprecise

Goldschmidt division algorithm

Introduction

Goldschmidt division is iterative division algorithm deployed in many processors. Higher

precision can be achieved by adding fraction bits for intermediate calculations or by having more
iterations.

Correct result:

Q= D— = 12.285714285714285714285714285714285714285714285714

Initial reciprocal is the inverse of divisor which is calculated by shifting bits around the fraction
point:

Integer Non-Restoring

CSUN

COm ut h E DR JEFF

comiz puter Architecture " “i
-2022

x86 AVX (SIMD)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

P DR JEFF
25| soFTwaRE
AV X O et Brabman
2016-2022
(1] 92 -® (598 —
Quora ﬁ]_r [_/_I EQ’] d_\ Q Search Qut

& Yowan Rajcoomar, Computer Technician (2008-present) ®
Answered 18h ago

There is no current use cases which requires general purposes registers larger than
64-bits.

The current trend is the extension of vector and SIMD capabilities and the
addition of domain-specific accelerators which will help demanding applications
such as CAD, rendering, scientific workloads, machine/deep learning and Al. There,
a lot of data needs to be crunched at the same time so companies such as Intel
have introduced the following:

e AVX-512F which bumps the number of FP/SIMD registers from 16 to 32
while providing additional features (at the cost of die space and thermals)

e AVX-512 VNNI (Vector Neural Instructions) for handing 8 and 16-bit values
in convolutional neural networks. This was made available in Cascade and
Ice Lake-based chips.

e AVX-512 BF16 which provides a speedup when dealing with dot products
on bfloat16 pairs.

e x86 AMX or Advanced Matrix Extension. This is literally an accelerator built
into the x86 core with its own register file and instructions. This will debut
sometime later this year with Intel’'s next HEDT lineup.

ARM also went through similar changes with the addition of Scalable Vector
Extensions (SVE and SVE2) which is flexible in terms of width, ranging from 128 to
2048-bits. The RISC-V spec also provisions a 128-bit mode but no actual hardware
implements it because it would be a waste of resources, die space and would add

CSUN : (5 B
e C om p uter A I'C h Itecture © Jeff Drobman
COMP122 2016-2022

x86 Multi-core

CSUN : B3 sorrware
T Multi-Cores + L2 / |3 O eff Brobman

2016-2022
COMP122 o

o REEEEI i | i

Lisa Su proudly shows off her 64-core EPYC monster at CES.

CSUN : B3 sorrware
T Multi-Cores + L2 / |3 O eff Brobman

2016-2022
COMP122
Intel —

This is a delided Core 2 Quad with the two Core 2 Duo dies.

CSUN : B sorrware
gralbiivo Multi-Cores + L2 / |3 Ot brobrman

2016-2022
COMP122

Intel —

L1d cache L1d cache
32KB 32KB
L2 cache L2 cache
256KB 256KB
L3 cache
3072KB

This is a late Core 2 Duo (Wolfdale), note how massive the uncore L2 is compared
to the actual CPU cores. (uncore = outside the CPU)

CSUN : B9 sorrware
T Multi-Cores + L2/L3 & e B

2016-2022
COMP122

Intel —

This special ‘glue’ remains in use today in all non-HEDT Intel CPUs.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

(DR JEFF
Q SOFTWARE

Multi-Cores + L2/L3 ci

Intel = Core 4

| Processar — e e ikl

i Graphics, 0| e R | L | L] B

h! e e ey ——- ineluding
| %5 : ad E=s Sl B ‘ i Display;

l Lei : : EHHEE [| ~ | 1DMIand

ﬂ i 1] Misc: /0

- ,j: l‘.u "lr‘kl T8t ll.l [} |‘ vl, bl LE L S .
apeasmanmanod Memory Controller 1/0 e |

Shared L3 Cacl'.\ef‘ '

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF
25| soFTwaRE

Multi-Cores + L2/L3 s

2016-2022

AMD - Zen 2

AMD is taking a creative approach with its “7nm” production by keeping tl.c
most problematic part of the CPU at 14nm and putting the scalable “core”
segments on 7nm octa-core “chiplets” that can be used alone or doubled up with
another octa-core chiplet or (shhh...) a Navi GPU.

AMD Kills two birds with one stone thinking outside the box with this creative
Zen 2 layout: silicon yield at 7nm is vastly improved by making smaller chips,
and the final product can be reconfigured to produce either workhorse 16-core
CPU’s or excellent SOC chips with a massive Navi GPU.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF

IVI u |tI_CO res + L2/L3 © Jeff Drobman

2016-2022

AMD —

GPU

10.7 teraflops of power
56 compute units

HBM2 Memory

CPU

Custom x86 Processor

2.7 GHz

Hyperthreaded
)

Memory
16GB of total RAM

Up to 484GB/s transfer speed

L2+L3 Cache of 9.5MB

CSUN : (5 B
e C om p uter A I'C h Itecture © Jeff Drobman
COMP122 2016-2022

Intel vs AMID

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

@3 DR JEFF
SOFTWARE

Intel vs. AMD e

2016-2022

0

Qu()ra ﬂ?Home 2=| Following |7| Answer Eaj Spaces /_\ Notifications Q Sea

@ Irné Barnard, Been using and programming for computers since the mid ®
80s

Answered 14h ago

Varies per the exact program you will run on it. Intel Core i7-9700K @ 3.60GHz vs AMD
Ryzen 7 3700X 7

If that program is a high CPU bound thing, using only a single thread - then the i7
outperform the R7 by 8%.

If however the program uses more than one thread, the performance is reversed and
the R7 is 56% better.

I'd likely go for the Ryzen between these two. That 8% improvement would hardly be
noticeable - it's close to just the expected statistical error from such test. But the 56%
is a huge deal better - and you will definitely experience a big impact in performance.

Of course, if the program you run simply never takes advantage of the extra
performance on multiple threads - then it's pretty much a toss up. The reason I'd go for
the Ryzen is that there is likely at least some programs able to use more than a single
thread - and those would have a huge performance boost from the Ryzen.

Intel vs. AMD

COMP122 m Irné Barnard, 2016-2022

You'd have to start looking at the newer and higher class Intels to beat the Ryzen 7-
3700X. At which point they’re more expensive: Intel Core i7-9700K @ 3.60GHz vs AMD
Ryzen 7 3700X vs Intel Core i7-10700K @ 3.80GHz vs Intel Core i9-10900K @ 3.70GHz
Z

® {7-10700K - 25% more cost, 15% improved single thread, -16% lower multi
thread.

® 9-10900K - 80% extra cost, 18% better single thread, 6% better multi thread.

Both those are more expensive to a larger degree than their performance increases
over the Ryzen would suggest.

And of course, once you allow a newer Intel, you should also allow a newer Ryzen. The
5000 series is supposed to have a 19% improvement on single threads over the 3000
series. Which would suggest they'd then beat those 10th series intel CPUs in all
measures. Depending on the prices they sell for in the next month this may mean Intel is
really the underdog.

If you can find one, even a Ryzen 5-5600X is going to outperform all those Intel CPUs
at single thread: Intel Core i7-9700K @ 3.60GHz vs AMD Ryzen 7 3700X vs Intel Core
i7-10700K @ 3.80GHz vs Intel Core i9-10900K @ 3.70GHz vs AMD Ryzen 5 5600X 7

Around 9% better than the i9-10900K’s single thread performance. While it is 19%
better than the old i7-9700K (at the same cost).

CSUN : &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
R AMD vs Intel i9 0 Jeff Drobmar

COMP122

So it's best to say that some of the Intel i9 processors (the high end) compete with
some of the AMD Threadripper processors (the low-to-mid range). Today’s top i9
delivers 10-18% better performance than the Threadripper core, but an 18 core i9
just looks sad compared to a 64 core Threadripper on well threaded code.

Now, it should go without saying, but I'll say it anyway: if you're buying a
Threadripper system, you're optimizing for massively multithreaded applications.
Top single-threaded performance of any CPU series tends to go down as the
number of cores go up. So if you have largely single/small-threaded work, a
Threadripper or an i9 is a waste of money.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF
25| soFTwaRE

AMD vs Intel i9 S

2016-2022

So you're looking for an Intel processor for consumers/workstations that's more or
less similar to Threadripper. Intel’'s answer to EPYC is Xeon, so are there any
mainstream i-series processors that correspond closely? The latest high-end
Xeons and Phi processors use Intel's LGA 3647 socket. This socket supports six
channels of DDR4 memory, but there is no consumer version of an LGA3647
processor.

S 3. §
33
3 33
133
>
@ %
333333 - .
*3
intel
3
3 ;nn
3 9th Gen
A lntel’ Co,'e"' i9

) & 4

So the Intel answer to complete with Threadripper is the LGA2066 socket, also
called Socket R4. There are lower-end Xeons that also use this socket. This
supports DDR4 up to 256GiB on four channels, 48 PCI Express 3.0 lanes (with an
additional 24 PCI Express 3.0 links in the X299 chipset). Current LGA2066 chips
offer up to 18 CPU cores.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

(5 |k
AMD vs Intel S

2016-2022
Sockets

The current Threadripper sTRX4 socket is an LGA design with 4094 pins.. they're
kind of mindboggling to look at. Modern EPYC processors use a mechanically
identical but electrically tweaked Socket SP3r3 socket. Older chips use TR4 and
SP3r2 sockets, respectively. The EPYC series and Threadripper Pro actually
support up to 2TiB DDR4 DRAM on eight channels and 128 PCI Express 4.0 links.
Today's standard Threadrippers support 128 GiB or 256GiB DDR4 DRAM on four
channels, with up to 88 PCI Express 4.0 links, and of course, up to 64 CPU cores
on all three platforms.

So you're looking for an Intel processor for consumers/workstations that’s more or
less similar to Threadripper. Intel's answer to EPYC is Xeon, so are there any
mainstream i-series processors that correspond closely? The latest high-end

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

(5 |k
AMD vs Intel S

2016-2022
Sockets

AMD Threadrippers are essentially consumer versions of the EPYC line of server
processors. There are differences, but the basic idea is the same: four DDR4
memory channels, high core count, etc. My aging Threadripper system has “only”
sixteen processor cores and the usual four 64-bit DDR4 memory channels.

Like all Ryzen family processors, Threadrippers are made of multiple “chiplets”
connected by ultra high speed Infinity Fabric links. Each chiplet so far contains up
to eight processor cores. The central chip in generation 2 and later Threadrippers
is a I/O chip, supporting PCI Express links, that sort of thing.

The current Threadripper sTRX4 socket is an LGA design with 4094 pins.. they're
kind of mindboggling to look at. Modern EPYC processors use a mechanically
identical but electrically tweaked Socket SP3r3 socket. Older chips use TR4 and
SP3r2 sockets, respectively. The EPYC series and Threadripper Pro actually
support up to 2TiB DDR4 DRAM on eight channels and 128 PCI Express 4.0 links.
Today's standard Threadrippers support 128 GiB or 256GiB DDR4 DRAM on four
channels, with up to 88 PCI Express 4.0 links, and of course, up to 64 CPU cores

CSUN B8 sorrware
- AMD vs Intel
MP

Processor Pricing by

Family

varsacripper=Cascads: | gonozgaiso $800 - $1,000 ($2,999)
/C\(f\)ﬁrlg il;yzen 9 - Intel $434 - $739 $450 - $505

éi\)drg | zen 7 - Intel $294 -$339 £300 - $370

éoMr?ei zen 5 - Intel $149 - $249 £125 - $200

AMD Ryzen 3 - Intel $95 - $120 §78 - $173

Core i3

CSUN B sorrware
pChuromn AMD vs |nte| B e oo

2016-2022
COMP122

Intel and AMD CPU Multi-Threaded Performance

Multi-Threaded App Score Architecture Cores/Threads Base/Boost
Threadripper 3990X 100.0% Zen 2 64/128 2.9/4.3 GHz 280W
Threadripper 3970X 83.76% Zen 2 32/64 3.7 /4.5 GHz 280W
Threadripper 3960X 72.04% Zen 2 24/48 3.8/4.5GHz 280W
Xeon W-3175X 69.92% Skylake 28/56 3.1/4.3 GHz 225W
Ryzen 9 3950X 53.48% Zen 2 16/32 3.5/4.7 GHz 105W
Core i9-10980XE 52.75% Cascade Lake-X 18/36 3.0/4.8 GHz 165W
Core i9-9980XE 52.14% Skylake 18/36 4.4 /4.5 GHz 165W
Threadripper 2990WX 48.00% Zent 32/64 3.0/4.2 GHz 250W
Ryzen 9 3900X 44.64% Zen 2 12/24 3.8/4.6 GHz 105w
Ryzen 9 3900XT 44.55% Zen 2 12/24 3.8/4.7 GHz 105W

Threadripper 2970WX 44.26% Zen + 24/48 3.0/4.2 GHz 250W

: N\ DR JEFF

CSUN IQI SOFTWARE
STATE NIy EReITY © Jeff Drobman
AMD vs Intel

COMP122

AMD vs Intel Productivity and Content Creation
Performance

Image 21

Multi-Threaded Performance Ranking ’ -
Geomean - nT Cinebench, POV-ray, vray, Blender, Handbrake. y-cruncmm S HAl{ DVVHI‘I

Higher is Better
$740 - Ryzen 9 3950X
$420 - Ryzen 9 3900X PBO
$499 - Ryzen 9 3900XT PBO
$420 - Ryzen 9 3900X
$499 - Ryzen 9 3900XT
$488 - Core 19-10900K @ 5.1
$488 - Core 19-10900K
$3 e i7-10700K @ 5.1
en 7 3800XT PBO
S - Ryzen 7 3800X PBO

393.5

332.7
332.2

327.8

297.2

247.5

$339 - Ryzen 7 3800XT
$329 - Ryzen 7 3800X
$387 - Core i7-10700K
$270 - Ryzen 7 3700X

245.5
PLEN

239.6

$249 - Ryzen 5 3600XT
$225 - Ryzen 5 3600X
$170 - Ryzen 5 3600
$263 - Core i5-10600K

—
~N

N
..
~
x

o
=}

50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 I

(Image credit: Tom's Hardware)

CSUN : B sorrware
AMD vs Intel: Mid & e

2016-2022
COMP122
AMD vs Intel CPUs Mid-Range and Budget Specs and Pricing
Base
$-Per-
, Cores/ [L3
Mainstream MSRP/Retail Threads Boost Core/Thread Cach
oSt (MSRP)
Coreis-10600K/KF | $352 0 6/12 317 ~saas-s22 12
38/ $415/
Ryzen 5 3600XT $249 6/12 38 o 32
38/ ~$41.5/
Ryzen 5 3600X $249/$205 6/12 4_4 tel 32
Core i5-10600 $213 6/12 i'g I $36/-$23 12
Ryzen 5 3600 $199/$175 6/12 387 $33/-417 32
Core i5-10500 $192 6712 210 s32/-816 12
Core i5-10400 / F f;)sz 18157 g/12 421'3 I $26/~$13 12

DR JEFF

CSUN

. 25| soFTwaRE
INDIEAPPDEVELOPER
e AMD vs Intel: High-end
NORTHRIDGE L] 2016-2022
COMP122
— : HEDT —
AMD vs Intel CPUs High End Specs and Pricing
Base
; -Per-
High End Cores/ / $ L3
Mainstream MSRP/Retall tp .eo4s Boost Core Cache TDPP
(MSRP)

GHz
Ryzen 9 3.5/
e $749/$739 16/32 35 $46 64 105W
Ryzen 9 3.8/
Byzan g $499 i2ios 33 $42 64 105W
Ryzen 9 3.8/
Eyzar $499/$434 12/24 38 $42 64 105W
Core i9- $488 (K) / 37/
10900K/KF $472 (KF) 10720 353 $49 20 125W
Core i9- $439 / $422 377
O = 10720 37 $44 20 65W
Core i7- $374 (K) / 38/ ~$47/
10700K/KF $349 (KF) 8/16 5.1 ~$24 16 125W
Ryzen 7 3.9/ $50/
S $399 8/16 2 2 32 105W

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

AMD vs Intel: High-en

d@

AMD vs Intel CPUs HEDT Specs and Pricing

High End
Desktop
(HEDT)

Threadripper
3990X Ee

Intel W-
3175X

Threadripper
3970X s

Threadripper
3960X PP

Xeon W-3265

Core i9-
10980XE

MSRP
/
Retail

$3,990
/
$3,750

$2,999
/ N/A

$1,999
/
$1,899
$1,399
/

$1,399

$3,349
/ N/A

$979/
$1,099

Cores/
Threads

64 /128

281756

32/64

24748

24748

18736

Base
/
Boost
GHz

)
wio

hw
ny 00 =
~

e

Hpw
oo

b
RN

0/
.8

AW

L3
Cache

256

38.5

*128

*128

33

24.75

TDP

280W

255W

280W

280W

205w

165W

PCle

72
Usable
Gend

48
Gen3

72
Usable
Gend

72
Usable
Gend

64
Gen3

48
Gen3

The high end desktop (HEDT) is the land of creative prosumers with fire-
breathing multi-core monsters for just about every need. Intel has long enjoyed

the uncontested lead in this segment, but while AMD's first-gen Threadripper
lineup disrupted the status quo, the Threadripper 3000 lineup destroyed it.

M¢

Qu
32

Six
Ch
DC
26

Qu
DC
32

Qu
DC
32

Six
Ch
DC
29

QL
29

HEDT —

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

2016-2022

COMP122

ACER SWIFT 3 (RX VEGA 8)

LENOVO FLEX 14 (RXVEGA 6)

HPSPECTRE X360 (IRIS PLUS)

ACERSWIFT 3 (IRISPLUS)

MATEBOOK X PRO (MX 150)

9@ TORONTO
Acer Swift 3 - INTEL vs AMD!

CSUN Bl sorrware
eSO AMD vs Intel O e Srovman

2016-2022

COMP122

ACER SWIFT 3 (4700UV)

LENOVO FLEX 14 (45000V)

MACBOOK PRO 13(15-1038NG7)

DELL XPS 13(15-1035G1)

SURFACE LAPTOP 3 (17-1065G7)

ACER SWIFT 3 (I7-1065G7)

@ TORONTO
Acer Swift 3 - INTEL vs AMD!

CSUN Bl sorrware
eSO AMD vs Intel O e Srovman

2016-2022

COMP122

ACER SWIFT 3 (4700UV)

LENOVO FLEX 14 (45000V)

MACBOOK PRO 13(15-1038NG7)

DELL XPS 13(15-1035G1)

SURFACE LAPTOP 3 (17-1065G7)

ACER SWIFT 3 (I7-1065G7)

@ TORONTO
Acer Swift 3 - INTEL vs AMD!

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

2016-2022

MOZILLA FIREFOX COMPILE TEST

(LOWER IS BETTER)

ACER SWIFT 3 (4700U) 45 MINS

MACBOOK PRO 13(15-1038NG7) 52 MINS

LENOVO FLEX 14 (4500U) ' 53 MINS

SURFACELAPTOP 3(17-1065G7)

ACER SWIFT 3 (17-1065G7)

DELL XPS 13 (15-1035G1)

@ TORONTO

Acer Swift 3 - INTEL vs AMD!

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

AMD vs Intel: Gaming

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Intel and AMD CPU Gaming Hierarchy

Cores/Threads

Base/Boost

Intel Core i9-10900K

Intel Core i9-9900KS

Intel Core i9-10980XE

Intel Core i7-10700K

Intel Core i7-9700K

Intel Xeon W-3175X

AMD Threadripper
3970X

AMD Threadripper
3960X

Intel Core i9-9900K / F

AMD Threadripper
3990X

AMD Ryzen 9 3900XT

100

99.83%

98.92%

97.58%

97.18%

96.82%

96.59%

96.53%

96.25%

96.16%

95.01%

Comet Lake

Coffee Lake-
R

Cascade
Lake-X

Comet Lake

Coffee Lake-
R

Skylake
Zen 2

Zen 2

Coffee Lake-
R

Zen 2

Zen 2

10/20

8/16

18/36

8/16

8/8

28/56

32/64

24/48

8/16

64/128

12/24

3.7/5.3

40/5.0
GHz

3.0/4.8
GHz

3.8/5.1
GHz

3.6/49
GHz

3.1/43
GHz

3.7/45
GHz

3.8/45
GHz

3.6/5.0
GHz

29/43
GHz

3.8/4.7
GHz

125W

127W

165W

125W

95W

225W

280W

280W

95w

280W

105W

Intel Core i9-9900K

Intel Core i9-9900KS

Intel Core i9-
10980XE

Intel Core i7-10700K

Intel Core i7-9700K

Intel Xeon W-3175X

AMD Threadripper
3970X

AMD Ryzen
Threadripper 3960X

Intel Core i9-9900K

AMD Ryzen
Threadripper 3990X

AMD Ryzen 9 3900XT

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

AMD vs Intel: Gaming

Frames Per Second
9 Game Average, 1920x1080, Medium

RTX 2080 Ti FE
RTX 2080 Super FE
RTX 2080 FE

RTX 2070 Super FE
Radeon Vil

RX 5700 XT

RTX 2070 FE

RX 5700

RTX 2060 Super FE

hire RX 5600 XT Pulse
RTX 2060 FE
EVGA GTX 1660 Ti
EVGA GTX 1660 Super
Zotac GTX 1660
Sapphire RX 5500 XT 8GB
Sapphire RX 5500 XT 4GB
Zotac GTX 1650 Super
EVGA GTX 1650 GDDR6

Gigabyte GTX 1650

tom’sHARDWARE

140.8 203.5

136.0

1271

125.7

124.5

124.8

116.3

106.8 140.9

&

101.8

—
~

l
=]

B

8
g
o

~

N
~

73 95

150 200

o

50

100
W Average MW 99th

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

AMD vs Intel: Gaming

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

(=)

Average FPS (Geomean), Entire Test Suite

$488 - Core i9-10900K @ 5.1
$387 - Core i7-10700K @ 5.1
$488 - Core i9-10900K

$387 - Core i7-10700K

$339 - Ryzen 7 3800XT PBO
$329 - Ryzen 7 3800X PBO
$499 - Ryzen 9 3900XT PBO
S en 9 3900X PBO
Core i5-10600K
- Ryzen 7 3800XT
5499 - Ryzen 9 3900XT
$270 - Ryzen 7 3700X
$740 - Ryzen 9 3950X
$420 - Ryzen 9 3900X
$329 - Ryzen 7 3800X
$2489 - Ryzen 5 3600XT
$225 - Ryzen 5 3600X
$170 - Ryzen 5 3600

Image 1 of

tom'sHARDWAKE

1
2

—

N) I

124

3

—
N

—
N
N

40 80 100 120 140

o

20

(Image credit: Tom's Hardware)

CSUN C . , &R sorrware
mCuroNs AMD vs Nv|d ila GPU’s SRET

2016-2022
COMP122

VS

AMD vs Nvidia: Who Makes the Best GPUs?

In the AMD vs Nvidia competition to make the fastest and most efficient GPUs
possible, there can be only one winner. We look at performance, features, drivers, ...

CSUN . (5 B
e Computer Architecture — esson
COMP122

x86 Assembly Language

» See separate slide set “MCS-8 Assembly”

CSUN : B3 sorrware
18086 Code

COMP122

Q John Stephenson, Analyst programmer
magnetic tape reels.

Answered 9h ago

Set low byte A =all 1's or all 0’s
Several methods:

1 MOV AL,FF <mm MOV AH AL
2 AX
3

4 OR AL,FF

5

6

7 XOR AL,AL

8 NOT AL

UPPER CASE!

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ISA

DR JEFF

25 soFTwARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Intel x86

[————
intel iAPX 88 Book

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Intel x86: 18088

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Bus Interface —

8085A
BUS INTERFACE

=B

System Buses

NON-Multiplexed A+D Buses

CONTROL BUSES (status & control)

DATA BUS

COMP122
16-BIT
INTERNAL
ARCHITECTURE
BRINGS 16-BIT CAPABILITY TO 8-BIT
ENVIRONMEN
Figure 1-2. 8088 CPU
< ADDRESS BUS
MEMORY 1/0
cPU @ T Q as
MODULE
< DATA BUS >
< CONTROL BUS

Figure 1-1. Microcomputer Block Diagram

DMA

NON-MULTIPLEXED BUSES

CSUN : B8 sorrware
Intel x86: 18088 g

2016-2022
COMP122
— Bus Interface —
——— e~
284A
:
[g088 K> ® {T_—)| 8085
. A8- -bi v
16-bit [& 8-bit |
ALE
MPU ::> <: MPU ad (8088 MULTIPLEXED BUS —
F_{B .
gl [t i i<
f i > W< :
- 177 | » 8355/8755A 8185
::> 1o/N <: RO S RAM/IO)TIMER ROM/EPROM/I0 __ RAML]
DT/R > < 1 ROM DRAM
STATUS ' St
550 | > & iPaty2 JAMASTY 3
8088 1S AN EASY UPGRADE FOR EXISTING 8-BIT SYSTEMS
Figure 1-23. Multiplexed Bus Components for Low Chip-Count Faplicatape
Figure 1-22. 8088 Bus Interface is Simi 8088 68B09 Z80A Z80B
nterface is Similar to 8085 CPU 5MHy 2MH> 4MH; 6MH;
MEMORY
A%ICMEESS 460 NS 320 NS 250 NS 140 NS

LONGER ACCESS TIME MEANS SLOWER (AND
EAPER) MEMORIES CAN BE USED WITH iAPX 88

Figure 1-25. iAPX 88 Longer Memory Access Time

S DR JEFF

CSUN . SOFTWARE
CALIFORNIA [] INDIEAPPDEVELOPER

TR Intel x86: 18088 © effDrobmar

2016-2022
COMP122 Bus Interface —

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

BIU

EU

=@ DR JEFF
25 soFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022
Pipeline
uTioN L/ INSTRUCTION | N TERFACE
EXESNIT piPELINE | 'NTGNIT
SYSTEM BUS
PIPELINED ARCHITECTURE DELIVERS HIGHER
PERFORMANCE WITH REDUCED BUS ‘“DEAD
TIME” 5
Figure 1-4. Pipelined Internal Architecture
FETCH EXECUTE FETCH EXECUTE FETCHe .;
TIME —>
Figure 1-3. Program Execution in Standarg Microprocessor
FETCH FETCH FETCH FETCH FETCH DGAETTA

e | I

£

WAIT

EXECUTE

EXECUTE

EXECUTE

Figure 1-5. Parallel Operation in 8088 CPU

CSUN DR JEFF
Lo LN . &5 soFTwARE
o Intel x86: 18088 ©.ef robmar

COMP122 2016-2022
Registers
DATA REGISTERS
7 07 0
AX AH ' AL
BX BH BL
CX CH : cL
DX DH DL

POINTER AND INDEX REGISTERS

15 0
SP STACK POINTER
BP BASE POINTER
S| : .| SOURCE INDEX
DI : | DESTINATION INDEX
SEGMENT REGISTERS
15 0
cS gty CODE
ps-divs 02 4 SEDATA L
ss STACK
ES : EXTRA
INSTRUCTION POINTER AND FLAGS
15 ‘ 0
P INSTRUCTION
POINTER
FLAGS | olpbulrled z| [A] TPI]C
15 11100% 8976 5 432 ¢ 0

Figure 2-2. 8088 Register Structure

CSUN : B soFrware
Intel x86: 18088 e

2016-2022
COMP122

Registers

FLAGS of |DF| IF | TF|SF|zF AF PF CF

Figure 1-9. Control Registers

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF

. 252 soFTwARE
Intel x86: i8088 S

2016-2022
Registers
REGISTER OPERATIONS
AX Word Multiply, Word Divide,
Word |/O
AL Byte Multiply, Byte Di_vide, Byte
110, Translate, Decimal
Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
OX String Operations, Loops
CL Variable Shiftand Rotate
DX Word Multiply, Word Divide,
Indirect /0 :
SP Stack Operations
Sl String Operations
Dl

String Operations

Figure 2-3. Implicit Use of General*Registerg i

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86:

@@ DR JEFF
Q SOFTWARE

[]
INDIEAPPDEVELOPER
I © Jeff Drobman
2016-2022
Memory
3FFH
7L TYPE 255 POINTER: __|
(AVAILABLE)
3FCH
AVAILABLE 1 1
INTERRUPT
POINTERS
(224)
21 TYPE33‘PO|NTER: il
i ' (AVAILABLE)
084H -
[l TYPE32POINTER: ol
“(AVAILABLE) ~ 7
080H|
07FH 3
| TYPE31POINTER: __|
(RESERVED) K
RESERVED
INTERRUPT |} 4 ;
POINTERS T PO
(27)
% » 1 |
_ Al TY&ESEPE‘II%S:R: Y
L 014H §$‘ g
' | TYPE4POINTER: _ |
. ~ OVERFLOW
010H| fael QiGN O S
: 1580 TYPE3 QINTER !
I-BYTEINT N“smucnon VIO TC
DEDICATED RO o :
INTERRUPT | | TYP 2p0INTER: |
POINTERS : MASKABLE oln
(5) 008H it
byow TYPEI Pmm‘ER s
: T INQLg-sTEP N !
| ooaH|
e g 2 P'g ER: Dig |
DIVIDE IQQRI)R 7 b
000H : (s
sl PRa 3 Y 1 P Xnu
ﬂﬁ:Eﬂ?ﬁ.. TR e zrm HETR md*\;imhmx it

rf\ A% (B ey o

FIQUI’O 2-9. Interrupt VM m(i’”‘ 1} ano rosy sbos o

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

Intel x86:

M| DR JEFF
25 soFTWARE

: INDIEAPPDEVELOPER
I © Jeff Drobman
2016-2022

15

15

LOGICAL ADDRESS

Nl

ISEGMENT REGISTER

N

ADDER

Addressing ——

EA COMPONENTS CLOCKS*
Displacement Only 6
Base or Index Only (BX,BP,SI,DI) 5
Displacement T

+ _ . 9
Base or Index (BX,BP,SI,DI) '
Base ' BP + DI, BX +SI 7
Index o BP + SI, BX+ DI 8
Displacement BP+DI+DISP | .|
4 / ! BX+S|+D'S’P' Y 2
Base T, yrom ,

g BP+SI+DISP | ©
Index - BX+DI+DISP 3

19

0-BIT

20
PHYSICAL MEMORY ADDRESS

Figure 2-1. How to Address One Million Bytes

“Add 2 clocks for segment override L

'Figure 2-10. Effective Address Calculation Time

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

i

MEMQRY?%&;

ACK

Addressing ——

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

DR JEFF

CSUN . B soFrware
CALIFORNIA [INDIE APPDEVELOPER
srATE DR In te I X8 6 o 8 O 8 8 ® Jeff Drobman

2016-2022
COMP122

Addressing ——

MO RDAN

\

iy ¥ . O 1 Ay
‘\“ # * X

- - .\\\. ,
Rl HEREDE th

CSUN B sorwea
CALIFORNIA . Q SOFTWARE
o Intel x86: 18088
COMP122
Addressing ——
< DISPLACEMENT = 12 (WAGE CODE)
PAYROLL < INDEX = SI (EMPLOYEE #N)
DATA
< BASE = BX (EMPLOYEE GROUP)
< SEGMENT = DS (PAYROLL SEGMENT)
MOV AX,[BX + Sl +12];GET WAGE CODE

Figure 1-15. Four-Component Addressing Example

CSUN

DR JEFF

lmi SOFTWARE

STA(’;";LLII;(I)\}/{ENIII/;IT& L 1 INDIE APPDEVELOPER
" NORTHRIDGE I n te I X8 6 [] I 808 8 @jeffDrObman
COMP122 2016-2022
Addressing ——
I Figure 1-13. Process mer~=
s o S
e
MODE LOCATION OF DATA
IMMEDIATE WITHIN INSTRUCTION
REGISTER IN REGISTER ‘ o
DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAlNED
INSTRUCTION.
REGISTER INDIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAIN EDIN
REGISTER.
NDEX REGISTER

INDEXED OR BASED

AT MEMORY LOCATION POINTED TO BY SUM OF |
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED

IN INSTRUCTION.

BASED AND INDEXED
WITH DISPLACEMENT

MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
INDEX REGISTER CONTENTS AND IMMEDIATE DATA.

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDED TO THE ¢
'REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS. RIGE BBHRENT

Figure 1-14. iAPX 88 Addressing Modes

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

Reserved Words

Dr Jeff

Instructions ——

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

DR JEFF

. 252 soFTwARE
T8 UNIVERS L INDIE APPDEVELOPER
|| ItEI X86 |8088 © eff robman

Instructions —

NORTHRIDGE

COMP122
ALU - g TN R T
ION
g 071’7 GENERAL PURPOSE
Add byte or WOIt ___
:gg Add byte or word with Cat‘)"y1 > MOV Move byte or word
ING® ° Increment byfte O;\gﬁir:n Y PUSH Push word onto stack
| adjust for a

A:ﬁ ggg'mal - Jrustfor addition POP Pop word off stack
2 SUBTRACTION XCHG Exchange byte or word
R Subtract byte or word XLAT Translate byte
SBB | Subtract byte or word with borrow o= INPUT/OUTPUT
DEC Decrement byte or word by 1
NEG Negate byte or word IN Input byte or word
CMP Compare byte orword ouT Output byte or word
AAS ASCIl adjust for subtraction — :
DAS Decimal adjust for subtraction ADDRESS OBJECT

: MULTIPLICATION LEA Load effective address
MUL [l Multiply byte or word unsigned LDS Load pointer using DS
IMUL |} Integer multiply byte or word LES Load pointer using ES
AAM ASCIl adjust for multiply

_‘ ' ; DIVISION FLAG TRANSFER
DIV Divide byte or word unsigned Sy Load AH register from flags
Integer divide byte or word SAHF Store AH register in flags
égal égr?\:learfg;st;ffr diVi:ion PUSHF Push flags onto stack
O wor POPF Pop flags off sta
ck
CwD Convert word to doubleword] 5
Figure 1-16. Data Transfer Instructions

Figure 1-17. Arithmetic Instructions

T EFF
CSUN B8 sorrware

°
CALIFORNIA ° INDIE APPDEVELOPER
STATE UNIVERSITY e X I © Jeff Drobman
NORTHRIDGE []

COMP122 _
— AW Instructions —

2016-2022

CSUN By DR JEFF
CALIFORNIA SOFTWARE
Intel X86: |8088 = © Jeff Drobman

COMP122 2016-2022
Instructions ——
ALU LOGICALS Strlng
NOT “Not’’ byte or word b
AND “‘And”’ byte or word MOVS Move byte or word string
OR “Inclusive or’’ byte or word MOVSB/MOVSW | Move byte or word string
XOR “‘Exclusive or’’ byte or word CMPS Compare byte or word
TEST “Test’’ byte or word string
Shift SHIFTS SCAS Scan byte or word string
" | sHL/SAL Shift logical/arithmetic left LODS Load byte or word string
byte or word !
SHR Shift logical right byte or word 5105 Store hyde of wora StEng
SAR Shift arithmetic right byte or REP Repeat
word
REPE/REPZ Repeat while equal/zero
ROTATES
i REPNE/REPNZ | Repeat while not
ROL Rotate left byte or word equal/not zero
ROR Rotate right byte or word : g
Figure 1-19. String Instructions
RCL Rotate through carry left byte
or word
RCR Rotate through carry right
byte or word

w— Figure 1-18. Bit Manipulation Instructions

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122
JMP

Intel x86: 18088

Instructions

Dr Jeff

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

NOP

Instructions —

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag
51D Set direction flag

CLD Clear direction flag

STI Setinterrupt enable flag
CLI Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

wil Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next instruction
NO OPERATION

NOP No operation |

Figure 1-21. Processor Control Instructions

DR JEFF

&) soFTWARE

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

Dr Jeff

Instructions ——

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

Instructions —

FIRST OPERAND CHOICE DEPENDS ON ADDRESSING MODE:
FIRST OPERAND IN MEMORY E iR O PERAND
REGISTER
[INDIRECT ADDRESSING DIRECT ADDRESSING RUpEats
00" - DISP=0 MOD = 00
MOD =01 :DISP = DISP-LO SIGN AND MOD = 11
EXTENDED RIM =110
10 : DISP = DISP-HI, DISP-Li eI
OPERAND EFFECTIVE GIS
OPERAND ADDRESS = R/M: | 8-BIT 16-BIT
R/M: | EFFECTIVE ADDRESS DISP-HI, DISP-LO W=0) [W=1
000 | (BX) + (SI) + DISP 000 AL AX
001 | (BX) + (DI) + DISP 001 o ox
010 | (BP) + (SI) + DISP 010 DL DX
011 | (BP) + (DI) + DISP 011 BL B
100 | (SI) + DISP 100 AH SP
101 | (Dl) + DISP 101 CH BP
110 | (BP) + DISP 110 DH S|
111 | (BX) + DISP 11 BH DI
Where () means ‘‘contents of"’
*Exception—direct addressing mode
Figure 2-5. Determining First Operand
BATA DATA MEMORY e
it hebina WITHOUT BASE WITH BASE
CIRE i E DIRECT BX + OFFSET BP + OFFSET
S| BX + SI BP + SI
AN DI BX + DI BP + DI
ARRAYS S| + OFFSET BX + SI + OFFSET BP + SI + OFFSET
OF RECORDS DI + OFFSET BX + DI + OFFSET BP 4+ DI + OFFSET

Figure 2-6. Effective Addresses Used with Different Data Structures

TYPE OF MEMORY REFERENCE gEEgnglﬂTl' ASL.ErCE-\?II"I‘EII\\I.‘TI'E LOGICAL ADDRESS
BASE BASE

Instruction Fetch CS NONE IP

Stack Operation SS NONE SP

String Source DS CS,ES, 88 Sl

String Destination ES NONE DI

BP Used As Base Register SS CS,DS,ES Effective Address
General Data Read/Write DS CS,ES,SS Effective Address

Figure 2-7. 8088 Address Components

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Intel x86: 18088

COMP122
B
___ labels Ops BCNET operands
MENT

;' e iggumr:' cs: INAND.OUT

. 5

3. LY Gliks IN 2))?

4. INC

S ouT 2 AX

6. JMP. CYCLE

| DOUT ENDS .

: END CYCLE

Macro Constants (EQU)

BOILING.POINT EQU . 212
BUFFERSIZE EQU 32

NEW.PORT EQU
COWNT:. . uindHMEREUER

U PORTVAL+1

DR JEFF

25 soFTwARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Assembly Code —
start of segment

’

that’s what's in CS

comments

.end of segment
-end of assembly

Declare variables

THING pB ?
BIGGER.THING Dw ?
BIGGEST_THING DD ?

-defines a
defines @
‘defines a doub

byte
word (2 bytes
‘eword (4 byt‘?‘,

CSUN : B34 soFrware
Intel x86: 8088 ©.ef Drobman
E?MPlZZ Assembly Code —
1. MY_DATA SEGMENT :data segment
2. SUM DB ? ‘reserve a byte for SUM
3. MY_DATA ENDS -
g MY _CTODE ' SEGRES] -code segment
S. ASSUME CS:MY_ CODE, DS:MY_ DATA
-contents of CS and DS
g YPORT VAL EQU S -symbolic name for port number
GO MOV - AXMY_ DATA initialize DS to MY__DATA
8. MOV DS,AX
9. MOV SUM,0 ,clear sum
10. ®YCLES CMP - SUM,100 -if SUM exceeds 100
i, JNA NOT.__DONE o
id MOV AL,SUM ...then output SUM to port 3
13, OouT PORT_ VAL,AL
14. LT - ...andstop execution
15. - NOT__..DONE: IN AL,PORT_VAL ' ;otherwise add next input
16. ADD SUM,AL |
15 A JMP. GYoLE ,and repeat the test
18. 4 MY £ODE.ENDS
19. END GO ‘this is the end of the assembly

CSUN 9 DR JEFF
. &5 soFTwARE
iz |nte| X86: 18088 o
NORTHRIDGE e 2016-2022
COMP122 Assembly Code —
MY_DATA SEGMENT
X DB ?
Y DW f
Z DD s - Stack example
MY_DATA ENDS hy
MY_EXTRA SEGMENT
ALPHA DB Sy 3
BETA DW “a
GAMMA DD ?
MY_EXTRA ENDS
MY_STACK SEGMENT |
DW 100 DUE (7) ;this is the stack
TOP EQU THIS WORD :
MY_STACK ENDS
MY_CODE SEGMENT | |
ASSUME CS:MY_CODE,DX:MY_DATA
ASSUME ES:MY_EXTRA,SS:MY_STACK
START: MOV AX,MY_DATA ;initializes DX
MOV DS,AX
MOV AX,MY_EXTRA iinitializes ES
MOV ES,AX |
MOV AX,MY_STACK iinitializes SS
MOV SS,AX
MOV SP,OFFSET TOP iinitializes SP
MY_CODE ENDS
END START

DR JEFF

CCI\LIF()RNIA e l%’ SOFT_WARE
Intel x86: 18088 ©.ef Drobmn
COM P122 2016-2022

Assembly Code —

Details of ASM-86

Sample One: ' |
Translate the values from input port 1 1nto a

Gray code and send result to output port 1.

I/O + Gray code example

MY _DATA
GRAY
MY _DATA
MY _CODE

GO:

CYCLE:

MY _CODE

SEGMENT
DB
ENDS

SEGMENT
ASSUME
MOV

MOV

MOV

IN

XLAT

ouT
JMP
ENDS
END

18H,34H,05H,06H,09H,dAH,OCH',1 1H.,12H,14H

'MY_CODE, DS:MY _DATA
i -establish data segment

" AX,MY _DATA
DS,AX .
BX,0FFSET GRAY -translation table into BX
AL,1 ‘read in next value
GRAY .~ :translate it
1,AL -output it
CYCLE ;and repeat
GO

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Intel x86: 18088

= DR JEFF
85 soFTwaARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

sample Three:

Decimal multiplication algorithm.

MY _DATA
A
B
C
MY _DATA

MY_CODE

GO:
MOV

ENELE:

MY_CODE

SEGMENT
DB

DB

DB

ENDS

SEGMENT
ASSUME
MOV
DS,AX
CLD
MOV
MOV
MOV
AND
MOV
LODS
AND
MUL
AAM
ADD
AAA
STOS
MOV
JCXZ
LT
ENDS
END

Assembly Code —

Decimal Mult example
7,5 A

16,
LENGTH (A) DUP (?)

CS:MY_CODE,DS:MY __DATA

AX,MY_DATA :establish data segment
:forward strings
SI,OFFSET A :establish pointers
DI, OFFSET €
CX,LENGTH A :establish count
B,0FH :clear upper half of b
BYTE PTR [S1],0 ;clear c[l]
A ;get afi]
AL,0FH :clear its high-order bits
AL,B :multiply by b
:correct for ASCII
(D] ;add to cfi]
;adjust for ASCII
C ;store in cli]
[DI],AH ;...and c(l]
CYCLE ;repeat for entire string
GO

