DR JEFF

' CALIFORNIA
‘ S[IN STATE UNIVERSITY ﬁ S
NORTHRIDGE © Jeff Drobman
2016-2023
COMP122 8-27-23

ASSEMBLY Programming

Lab Basics
Dr Jeff Drobman

drieffsoftware.com/classroom.htm/
.-

N
B L5 b

-

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

Index

@'® DR JEFF

|§|SOFTWARE
© Jeff Drobman
2016-2023

**Tools: SDK/IDE = slide 14
s*Platforms =2 slide 22
**MIPS-MARS - slide 31
**ARM Sim — slide 49
**CECS Labs =2 slide 62
**GNU (gcc) =2 slide 65
**Eclipse - slide 69

**Misc IDE’s = slide 74

CSUN .. 2 soFrware
STATE UNIVERSITY D Ig I ta I SySte m S ©JZ?1C5D_;O;2,ZM

NORTHRIDGE

COMP122

U VV O

7-Level
STACK HIERARCHICAL MODEL OF
LEVELS OF DESIGN

OF DIGITAL SYSTEMS / \

LEVEL EXAMPLES

~:

' Computer

7 User Data <doc, .xds files

Layers

6 Applications | microsoft WoRD,

Middle Ware | microsort .NET Levels

SOFTWARE 5§
4

Controller "= | Composition

PROCESSOR 3 B intel AVD Pentiuni
MIPS, Sparc

ARCHITECTURE
HARDWARE \ j
oL 2 Logic Design
aacos 4)
NOTE: FIRAWARE Is any embedded sofiare, such 2 miciaprogiams, monfbrs, eak-me execubves, oo)

oy

Computer * DATA
Engineering N J
+* Architecture)
:) _ . | Hard disk Computer
A X4 PhySICa|dESIgn ,"’{N_“ ng%"% Flash disk Scienpce
% Flash
EEPROM ¢ Algorithms

s Theory

AAAAAAAAAAAA

STATE UNIVERSITY

COMP122

X2 00 LSS U & U9 D=

| DR JEFF
&5 soFTwaRrE

La b P o g rams O Jeff Drobman

2016-2023

“Hello World”: I/0 in MIPS & ARM

Number systems and radix conversion

BCD on LED

Moving data (memory <-> GR< -> FPU <-> CP0)

“Hello World” extended: loops, macros, functions/subroutines
Computation 1: Fibonacci (add, overflow)

Computation 2: Factorials (mult, overflow)

Bit-wise operations (bit masks, shifts); example: tic-tac-toe
Interrupt/Exception handler

10. Project 1: LED (MMIO, delay loops, speed slider)
11. Project 2: ISA design (logic design & sim new instructions)

2 3 3 3 3 3 3 5 5 7 8

LAB LAB LAB LAB LAB LAB LAB LAB LAB Proj Proj
1 2 3 4 5 6 7 8 9 1 2

CSUN . &R sorrware
ChTomy Section Ly sy

2016-2023
COMP122

Key Slides

**Instruction Formats/Classes
**Numbers
+* ASCII Codes

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Instruction Formats

Dr Jeff

6 5 5 5 5 3
$mmmmmmm- $ommmmm - $mmmmmm - $mmmm——- 4o $ommmm - +
R-type format| Op-code | R | R, | R, | SA |Funct-code
$mmm - $mmmm - $mmmm - - $mm———— pmmmm +
6 5 5 16
Hommmmm e Hmmmmmm e R e -
I-type format|Op-code | R, | R, | 2's complement constant |
$mmmm - $mmmm - $mmmm—— e +
“ 26
$mmmmmm- e +
J-type format| Op-code | jump_target
#ommmmm e e +
N 2625 2120 1615 1110 65 0
R oves DN = | re [e opst
3 2625 2120 1615 0
| es B~ | e S
t 3 2625 2120 1615 0
B wes Rs1®
N 2625

(=}

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Baseline Instruction Set

DR JEFF

=
25 soFTWARE
INDIE APPDEVELOPER
© Jeff Drobman
2016-2023

Rev Jan 2021

Computation

“ ALU
= ADD
= SUB
= AND

= OR
= XOR
= NOT
» MULT/DIV [opt]
* BIT
= SET/CLR
= TEST
** COMPARE
= CMP
« SHIFT
= SHIFT (A, L)
= ROTATE

4

L)

CAR)

L)

L)

Memory

*** Reg-Reg
= MOV
*** Reg-Mem
= LOAD
= STORE
= MOV
< Mem-Mem
= MOV
s Stack
= PUSH
= POP

Program Control

“* JUMP

= JUMP/GOTO
“* BRANCH

= BRA

= BRCC

= LOOP

s CALL

= CALL/CALR/JAL

= RET/RETFIE
« NOP

System Control

** Reset
= RESET
*** Power
= SLEEP/HALT

/O

*1/0
= N
= OUT

s Mem Mapped
= MOV PORT
= LOAD/STORE

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Ordinals

\ DR JEFF
25| soFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Technical ordinals
10~(-24)

10~(-21)

10~(-18) atto
10~(-15)
10~(-12) pico
10~{(-9) nano
10~(-6)
10~(-3)
107(-2)
10~(-1)

10~{+1) deka
10~{+2) hecto
10~(+3)/2~(18) kilo
10~(+6)/2~(208) mega
10~(+9)/2~(30) giga

10~(+12)/2~(40) tera
10~(+15)/2~(58) peta

10~(+18)/2~(60) exa
10~(+21)/2~(70)
10~(+24)/27~(80)

107(29)/27(100) geo

Gazillions

107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107

+6) million

+9) billion
+12) trillion
+15) quadrillion
+18) quintillion
+21) sexillion
+24) septillion
+27) octillion
+30) nonillion
+33) decillion
+36) undecillion
+39) duodecillion
+42) tredecillion
+45) quattuordecillion
+48) quindecillion
+51) sexdecillion
+54) septendecillion
+57) octodecillion
+60) novemdecillion
+63) vigintillion
107(+100) googol
107(+303) centillion
107(107(+100))
googolplex

o~ — — — — — — — — — — — — — — — — —

Power | Power
of 2 of 10

1024

1M
1G
1T

220

230
240

10°©
10°

1012

1,048,576
1.074x10°

1.0995x1012

mnm

byte
short
word
long

IPv6

216
232

264
2128

64K

4B
16 Q
340 ubD

65,536
4.3x10°
1.84x10%°
3.4x1038

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

GiB/TiB Ordinals

Decimal

Kilobyte
megabyte
gigabyte
terabyte
petabyte
exabyte
zettabyte

yottabyte

S DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Abbreviation Value Binary term Abbreviation Value % Larger m

KB

MB

GB

B

PB

EB

/B

YB

10°
100
10°
1012
1015
1018
1021

1024

Kibibyte
mebibyte
gibibyte
tebibyte
pebibyte
exbibyte
zebibyte

yobibyte

KiB

MiB

GiB

TiB

PiB

EiB

ZiB

YiB

210

220
230
240
250

260

2%

5%

7%

10%

13%

15%

18%

21%

1024
1,048,576
1.074x10°

1.0995x10%2

CSUN

ASCIl Codes- Letters

COMP122

Table 1-3 ASCII Conversion Chart for Letters

Hex Character Hex Character
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
46 F 66 f
47 G 67 g
48 H 68 h
49 I 69 i
4a J 6a J
4b K 6b k
4c L 6c I
4d M 6d m
de N 6e n
4f O 6f o
50 P 70 o

1963

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

DR JEFF

28 soFTwARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN .
ASCII Codes- 7-bit
COMP122
USASCIl code chort
? - 0 [s) 0 0 '
» —— oo 0 [| 0 o. | l.
0' b v
el] © l 2 3 4 s | 6 | 7
olojolo] O |Inu]lore |[se|] © @ P 0 "
ojlojo} | SOM | Dt ' \ A 0 0 Q
ololrlol 2 [sx{ocz | * 2 B R b ;
olo] 3 |ETx | DCY 7 3 C S 3 3
oli1]ojo]| 4 |eor Joca | o 4 D T « '
olr o] 5 [ena [nax | % 5 £ v . v
o1]r]o] 6 |ack |svn | & 6 f v 1 v
olt o] 7 |[®EL JETE | ° 7 G w P -
\n=\uO00A r{oflo]o] 8 | ss | can | ¢ o " x h .
sp=\u0020 1{ojo]1] 9 JuT || Ew) " 1 Y i y
1{O |V]|O] 10 | LF || Sus - - J 2 j 2
char ch=0xA 110 1|1 | I vY ESC + : x C k :
irlrjolo] 12 | sr | Fs L < L \ \
char sp=0x20 T tol T3 Tenlcs - I" = 3 =
vl i1 jo}) 14 s0 RS . > M ~ -
B IRE / 4 0 = 0

IANA encourages use of the name "US-ASCII" for Internet uses of ASCII

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Old Mac Char Codes

Dr Jeff

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

DR JEFF
SOFTWARE

© Jeff Drobman

CALIFORNIA
STATE UNIVERSITY

CSUN

2016-2023

MS Windows (1252)

NORTHRIDGE

COMP122

129

113

Lo

1 A Qla q L

kK

Q|

B

,

on A

456¢

M#L$ 7 w&¢”-

™

< L o

249

233
~
<

I Z

bat]

U

_0e 122 L 13% %4 L 170 186 200 0 1k 2% 2
E U ¢

4] m
2o »m,
9 o «u
q4H 0 >m.
s (m..

z S

k {

K [

SRS S S | I S -

B +

U
* Y

I
i

188 .

72

SO & SN | Bt

Ya

172 L

I p

208

JASK L 174 L 190

I !
| ,
Eh i kil
B & md o et
m,, 3

- -

S L ® %

S DR JEFF

CSUN SOFTWARE

peChromnin |_a b S orrommoren
NORTHRIDGE

2016-2023
COMP122

Software Day Tools

CSUN : B sorrware
Software Tool Chain & e

2016-2023
COMP122

Figure 7.1.6: Assembly language either is
written by a programmer or is the output of a
compiler (COD Figure A.1.6).

High-level language program

I Program L—l. Compiler —— Assembler — Linker —v\ Computer \'fl
Source-HLL ! Source-asm Object
Assembly language program

Figure 7.1.1: The process that produces an executable file (COD Figure A.1.1).

An assembler translates a file of assembly language into an object file, which is linked with other files and libraries into an executable

file. : :
Multiple Source files
R R —
Source | | Object
dle | fie]
o T /'—‘"—_—--_ — Loy ("—‘“—--_
“ho® A —~ e T Ler [S
A e /‘_-_*—__‘\.
Source | | Object Program
fle [| fle [_ by

CSUN : B3 soFrware
Software Tool Chain o i oimr

2016-2023
COMP122

s Compilers
» Compiled languages (C, C++, C#, VB)
<> Compile completely: Translate HLL (.c, .h) into ASM (.asm)
» Interpreted languages (Java, Pascal)
<> Compile incompletely (“JIT”) to an “intermediate” language
<~ “Pseudo” code is compiled at run time (slow)
s Assemblers
<> Translate ASM (.asm) into linkable machine code modules (“LM”)
¢ Linkers
<> Combine (“link”) LM modules into a single “executable” (.exe)

<> Resolve external references
<> Embed calls to dynamic “link libraries” or “frameworks” (.dll files)

» Debuggers

** SDK contains Compilers + APl (Libraries) + IDE
** IDE is a development environment w/debugger

CSUN B soFrware
IDE + Platforms O

COMP122

€ C code
COMPILER
<«<——— Java
JAVA IL-bytecode < l
|
{ ASM € .asm
RUN _
AVA l |
i .VIVI (/_‘ ROM | .0bj
LINKER/LIB :
/ ROM bj
l ROM bj
HEX Abs Obj Mod
% .exe

RUN ;
PROM -bin
burner .

. JEFF
CSUN =0 SOFTWARE
eSO SDK / IDE O i Drobman

2016-2023
COMP122

SOFTWARE DEV KIT
INTEGERATED DEV ENVIRONMENT
s*Compiler
> JDK* *Used for Java (COMP110)
> Gce**
*IDE
> jGrasp*
» Eclipse
» MPlab
**SDK+IDE
» MIPS Mars**
» ARM sim™**
» MS Visual Studio
» Apple Xcode

**Used for Assembler (COMP122)

CSUN rﬁ%ﬁ)sggivig:gE
Development Platforms’ <seo
COMP122
& Desi Software Applications:
e Lesign Development Platforms
 Microsoft

<> OS = Windows (7, 8, 10)

<> APl = .NET Framework

<> SDK/IDE = Visual Studio Cross Platform

<> Languages = .NET versions of VB, C#, C++, Java

d Apple

< OS = Mac 0S X, iOS (mobile)

<> API| = Xcode (Cocoa Touch)

<> SDK/IDE = Xcode

<> Languages = Objective C, Swift
J Google

<> OS = Android

<> APl = Android

<> SDK/IDE = Android

<> Languages = C++

AAAAAAAAAAAA
STATE UNIVERSITY

COMP122

DR JEFF

|&1) SOFTWARE
SDK / IDE erroaionen

2016-2023

COMPILER - ASSEMBLER

%* SDK = IDE + Compiler (for C/C++)

d Eclipse
d Gnugcc (Gnu C compiler)
a Windows

a Pi (MinGW)
MIPS MARS (assembler+simulator)
ARM Sim

Others (misc)
a MS Visual Studio
R |AR

D OO

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Dev Boards

g DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

POPULAR DEVELOPMENT BOARDS

° SoCKit Development Kit

The SoCKit Development Kit presents a robust
hardware design platform built around the Altera
System-on-Chip (SoC) FPGA, which combines
the latest dual-core Cortex-A9 embedded cores
with industry-leading programmable logic for
ultimate design flexibility

MAX1000 IOT Maker Board

For engineers designing compact smart solutions
for the loT market, this FPGA loT Maker Board is
an excellent tool to speed up the development
process and enter the market with a high-
performance, reliable product.

Google Coral Dev Board

The Coral Dev Board is now in-stock and
available for free 1-day shipping at Arrow.com.
Prototype, scale, and deploy with more flexibility
Google.

(@rsm DR JEFF
&) sorrware
Software

2016-2023
COMP122

Platiorms

CSUN B8 ke
Software Platforms & e

2016-2023
COMP122

¢ Standalone Applications ** Embedded Control
O Native O Appliances
> Desktop O Cars/airplanes
» Mobil apps (phone/tablet) O Phones/tablets
d Web » i0S
» Client (“Front end” via browser) » Android
» Server ("Back end”) [Computer Peripherals

» Storage devices
» Printers

g J F
CSUN - sggTyI\E(zRE
. A p p Ty p es K gt

NORTHRIDGE 2016-2023
COMP122

s NATIVE
<> Runs directly on the device/computer on its OS
= Computer (desktop or laptop)
= Mobile (phone or tablet)

s WEB
<> Runs remotely on the website server and is
displayed on the device/computer via its Browser
** Mobile Web Apps
< redesigned websites for display on mobile devices
(phones, tablets) that include applications (“Web

Apps”)

CSUN B8 ke
Standalone Platforms & e

2016-2023
COMP122

HLL typesVB HLL types-Java HLL typesGO HLL types 2 HLL types1

¢ Standalone Applications

d Native
» Desktop
= Universal (“Office”)
= Specialized <- THIS CLASS
» Mobil apps (phone/tablet)

d Web
» Client (“Front end” via browser)
= Desktop e s s

» Server ("Back end”)

CSUN : : B3 soFrware
Running/Debugging .., e

2016-2023

cOMp122 Embedded Systems
SIMULATOR EMULATOR HARDWARE
SOFTWARE . Substitute Actual -
HARDWARE HARDWARE
 Debugger runtime 3 ICE (in-circuit) Code burned into ROM
environment in (IDE) = Pods J Working RAM
U Breakpoints = Breakpoints O Can use ICE
O Watch variables = Trace triggers & Board bring-up
U Target device buffers d Built-in test
selection d Memory (known good) = JTAG
= PC = R/W (ROM/RAM) J Logic analyzers
= Phone/tablet = Wait states

" Board wmm—)

Raspberry Pi
= MIPS Mars
= ARM Sim

CSUN

CALIFORNIA

Simulators

@W DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016-2023
COMP122
CPUlator MARS 4.5 QtSPIM 9.1.20 ARMSim# 1.91 ARMSIm# 2.1

No installation required (V)

Platform Web browser Java JRE Windows, OSX, Linux .NET 3.0 .NET 3.0
Free V] V] o o o

Open-source (V]]
Editor o o

Code completion (V] (V] n/a n/a n/a
Assembler GNU custom custom custom GNU

C or other languages]] o
Debugger V]] V) o V]

Breakpoints o o <o]]

Single-step (V]] V]]]

Reverse step o

Step over function (V) @]

Step out of function V]

Modify registers (V] @ (except pc) (V]

Modify memory V] (V]]

Show call stack V]

Runtime calling convention checks V]

Data watchpoints V]

MIPS32 r5
Instruction sets Mf;fjf;f’ MIPS32 MIPS32 ARMVS ARMVS
Nios Il
Self-modifying code V] V] maybe maybe

CSUN

DR JEFF

. SOFTWARE
T Simulators S
NORTHRIDGE 2016‘2023
COMP122
Data watchpoints V]
MIPS32 r5
Instruction sets MIPS32 16 MIPS32 MIPS32 ARMVS ARMvS
ARMv7
Nios Il
Self-modifying code V] V] maybe maybe
MMU
FPU V] V]]] V]
Memory model 4 GB flat 5 segments 5 segments 1 segment 1 segment
e T 2042 MB 4+4+4 MB data 4+1+0.5 MB data 64 KB data 96 KB data
Y 4+4 MB code 256+64 KB code 512 MB code 512 MB code
I/0 devices (V] (V] (V] (V) (V]
Terminal (V] (V] (V] V) (V)
File I/0 V] V] V]]
Other devices (V) (V] (V]
Simulation speed (Minst/second) 13 3 10 2 3

CSUN . @A) sorrware
ChTomy Simu | ators SeEm———

2016-2023
COMP122

B demo.s - [Unsaved] - VisUAL

& 13
3 ® oiorrs 5 7"

m Step Backwards Step Forwards

@xBEEF

¥
s
2

BxBEEFS Dac Hex

g
T
2

BxBE

g
T
2

ol
AxBEEFPAN2 n

ex5F77

g
T
2

o8 Dac Hex

n
=~

o afx & =

oo Dac Hex

g
aw

¥
a afgaga o a
CPIPICIPIPI 2R
= 3
X
2

e a

>

¥

pf

oo

v

A highly visual ARM emulator

Visual is a highly visual Arm Emulator that makes programming in ARM assembly more
accessible. It was created almost specifically to help Computer science student get through the

rigorous Introduction to Computer architecture course. Visual strongest positive is perhaps its

CSUN .) sorrwars
pCuroma Simu | ators SeEm———

2016-2023
COMP122

cem>d

Latest News: Arm's Transactional Memory Extension support in gem5

The gem5 simulator is a modular platform for computer-system architecture
research, encompassing system-level architecture as well as processor
microarchitecture. gem5 is a community led project with an open governance
model.

gemb5 was originally conceived for computer architecture research in academia, but
it has grown to be used in computer system design by academia, industry for
research, and in teaching.

CSUN (s DR JEFF

SOFTWARE
INDIE APPDEVELOPER
T, Lab o i brobmn
NORTHRIDGE 2016‘2023
COMP122

MIPS
MARS

Windows 10
|| Mars4_5 Properties X
¥ Name & Extension: General Details
Mars4_5.jar g

= | Mars4_5 |

Hide extension Type of file: Executable Jar File (.jar)

» Comments: Q Opens with: | |%| Java(TM) Platform SE t I Change...]
¥ Open with:

Location: F:\CSUN\COMP 122
@ Jar Launcher (default) — e 3.97 MB (4,169,142 bytes)
Use this application to open all documents Smadic SRS LT 101 byl

like this one.

——— DR JEFF
CSUN Q SOFTWARE
eChromnin |V| A RS S orrommoren
NORTHRIDGE

2016-2023
COMP122

Missouri State T

U N I V E R S I T Y courses.missouristate.edu

Mac Desktop
https://courses.missouristate.edu/KenVollmar/MARS/download.htm

Note: Is your MARS text unmdably small? Download and use a new release Ja
9, which contains a fix to automatically scale and size AWT and Swing components f
High Dots Per Inch (HIDPI) displays on Windows and Linux. Technical details.

(@m) DR JEFF
CSUN B soFTwaRrE
. |V| A RS S orrommoren
NORTHRIDGE

2016-2023

MARS - Mips Assembly and Runtime Simulator
Release 4.5
August 2014

Introduction

MARS, the Mips Assembly and Runtime Simulator, will assemble and simulate the execution of MIPS assembly language
programs. It can be used either from a command line or through its integrated development environment (IDE). MARS is written
in Java and requires at least Release 1.5 of the J2SE Java Runtime Environment (JRE) to work. It is distributed as an executable
JAR file. The MARS home page is http://www.cs.missouristate.edu/MARS/. This document is available for printing
there.

As of Release 4.0, MARS assembles and simulates 155 basic instructions of the MIPS-32 instruction set, approximately 370
pseudo-instructions or instruction variations, the 17 syscall functions mainly for console and file I/O defined by SPIM, and an
additional 22 syscalls for other uses such as MIDI output, random number generation and more. These are listed in separate help
tabs. It supports seven different memory addressing modes for load and store instructions: label, immed, labe l+immed,

($reg), label($reg), immed($reg), and label+immed($reg), where immed is an integer up to 32 bits. A setting is
available to disallow use of pseudo-instructions and extended instruction formats and memory addressing modes.

Our guiding reference in implementing the instruction set has been Computer Organization and Design, Fourth Edition by
Patterson and Hennessy, Elsevier - Morgan Kaufmann, 2009. It summarizes the MIPS-32 instruction set and pseudo-instructions
in Figures 3.24 and 3.25 on pages 279-281, with details provided in the text and in Appendix B. MARS Releases 3.2 and above
implement all the instructions in Appendix B and those figures except the delay branches from the left column of Figure 3.25. It
also implements all the system services (syscalls) and assembler directives documented in Appendix B.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

CSUN

CALIFORNIA

MARS

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016_2023
COMP122)
Registers
& Mars Coproc1 Coproc 0
PO @ MARS 4.5 Name Number Value
File Edit Run Settings Tools Help 5Zero 0 0x00000000
T R !ﬁ“ 1 0x00000000
| g 2 QO @ 2 0x00000000
‘;ij. - 0101 ‘ : ﬁ 0 * ' . ' : x ‘ 111 . ‘ ‘ @ sv1 3 0x00000000
4 0x00000000
: 1 5 0x00000000
Registers Coproc 1 ::2 6 o:omoooo
a3 7 0x00000000
Name Number Value 8 0x00000000
$8 (vaddr) 8 0x00000000 , tes - ettt
$12 (status) 12 0x00007f11 $t3 11 0x00000000
$13 (cause) 13 0x00000000 ;:; - o o000
$14 (epc) 14 0x00000000 $t6 14 0x00000000
_;H 15 0x00000000
. $s0 16 0x00000000
Registers $s1 17 0x00000000
$s2 18 0x00000000
Name Float [|ss3 19 0x00000000
20000000 $s4 20 0x00000000
$70 0x $s5 21 0x00000000
$F1 0x00000000 $6 2 0x00000000
$f2 Ox00000000 $s7 23 0x00000000
$f3 0x00000000 | o PPessenn
$f4 0x00000000 26 0x00000000
$f5 0x00000000 g; gigmgm
$76 0x00000000 29 ox7fffeffc
$F7 0x00000000 30 0x00000000
$8 0x00000000 3 M
$f9 Ox00000000 0x00000000
$710 0x00000000 £x0660060

CSUN B sorrware
Memory Segments o oo

2016-2023
COMP122

FFFFFFFF
Ire 7.2.1: Object file (COD Figure A.2.1).
A UNIX assembler produces an object file with six distinct sections.
Stack Display
Buffer
! Object file Text Data Relocation | Symbol | Debugging
header segment segment information table information
Currently
Unused
\ Printer
l Buffer
Heap
Data
Text
00000000

Typical memory layout for a program with a 32-bit address space.

DR JEFF

CSUN o5

SOFTWARE
. |V| A RS S orrommoren
NORTHRIDGE 2016—2023
COMP122
Memory Map

e e MIPS Memory Configuration

oxffffffff memory map limit address
oxffffffff kernel space high address
oxffffoeee |MMIO base address
oxfffeffff kernel data segment limit address
0x90000000 .kdata base address

ox8ffffffc kernel text limit address

0x80000180 |exception handler address

0x80000000 kernel space base address

-rConfiguration 0x80000000 |.ktext base addres
© Default Ox7fffffff user space high address

Compact, Data at Address 0 | px7fffffff data segment limit address
Compact, Text at Address 0 | o 7¢rffffc

stack base address

ox7fffeffc stack pointer $sp

0x10040000 stack limit address
0x10040000 |heap base address '
0x10010000 m
0x10008000 global pointer Sgp

0x10000000 data segment base address
0x10000000 .extern base address

oxoffffffc text limit address
0x00400000 |.text base address

[age DR JEFF
CSUN Q SOFTWARE
pCAonNI |V| A RS S orrommoren
NORTHRIDGE

2016-2023
Key -

Operand Key for Example Instructions

label, target any textual label

$t1, st2, st3 any integer register

$f2, $f4, s$f6 even-numbered floating point register
$fo, $f1, sf3 any floating point register

$8 any Coprocessor 0 register

1 condition flag (0 to 7)

10 unsigned 5-bit integer (0 to 31)

-100 signed 16-bit integer (-32768 to 32767)
100 unsigned 16-bit integer (0 to 65535)

100000 signed 32-bit integer (-2147483648 to 2147483647)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

DR JEFF

g SOFTWARE
|V| A R S e

2016-2023

Load & Store addressing mode, basic instructions

-100(st2)

sign-extended 16-bit integer added to contents of $t2

Load & Store addressing modes, pseudo instructions

($t2)

-100

100

100000

100(st2)
100000(s5t2)

label

label(s$t2)
label+100000
label+100000(5$t2)

contents of $t2

signed 16-bit integer

unsigned 16-bit integer

signed 32-bit integer

zero-extended unsigned 16-bit integer added to contents of $t2
signed 32-bit integer added to contents of $t2

32-bit address of label

32-bit address of label added to contents of $t2

32-bit integer added to label's address

sum of 32-bit integer, label's address, and contents of $t2

CSUN 2 soFrware
MIPS Assembly

COMP122
MIPS Lab1l —
® O MARS 4.5 Help
MARS License Bugs/Comments Acknowledgements Instruction Set Song
Operand Key for Example Instructions
label, target any textual label
$t1, $t2, $t3 any integer register
$f2, $f4, $f6 even-numbered floating point register
$70, $71, $13 any floating point register

Licia e Extended (pseudo) Instructions Directives Syscalls Exceptions Macros

'sltiu $t1,$t2,-100 Set less than immediate unsigned : If $t2 is less than sign-extended 16-bit imme
'sltu $t1,$t2,$t3 Set less than unsigned : If $t2 is less than $t3 using unsigned comparision, then
jsqrt.d $f2,574 Square root double precision : Set $f2 to double-precision floating point square
sqrt.s $f0,$f1 Square root single precision : Set $f@ to single-precision floating point square
'sra $t1,$t2,10 Shift right arithmetic : Set $tl1 to result of sign-extended shifting $t2 right by
'srav $t1,$t2,$t3 Shift right arithmetic variable : Set $tl to result of sign-extended shifting $t2
}srl $t1,$t2,10 Shift right logical : Set $tl to result of shifting $t2 right by number of bits s
}srlv $t1,$t2,$t3 Shift right logical variable : Set $tl to result of shifting $t2 right by number
'sub $t1,$t2,$t3 Subtraction with overflow : set $t1 to ($t2 minus $t3)

sub.d $f2,$f4,$6 Floating point subtraction double precision : Set $f2 to double-precision floatin
jsub.s $70,$71,$13 Floating point subtraction single precision : Set $f@ to single-precision floatin
'subu $t1,$t2,5t3 Subtraction unsigned without overflow : set $tl to ($t2 minus $t3), no overflow
'sw $t1,-100($t2) Store word : Store contents of $tl into effective memory word address

jswcl $71,-100($t2) Store word from Coprocesor 1 (FPU) : Store 32 bit value in $fl to effective memor
swl $t1,-100($t2) Store word left : Store high-order 1 to 4 bytes of $tl into memory, starting with
}swr $t1,-100($t2) Store word right : Store low-order 1 to 4 bytes of $tl1 into memory, starting with
syscall Issue a system call : Execute the system call specified by value in $v@

teq $t1,$t2 Trap if equal : Trap if $tl is equal to $t2

‘teqi $t1,-100 Trap if equal to immediate : Trap if $tl is equal to sign-extended 16 bit immedia
}fma £t1 &t2 Tran if areater nr enual * Tran if &€+1 i< areater than nr enual tn €t2

|

CSUN 23 sorrware
MIPS Assembly & e

2016-2023
COMP122 MIPS Lab1l —

Basic Instructions Extended (pseudo) Instructions Syscalls Exceptions Macros

.align Align next data item on specified byte boundary (@=byte, 1=half, 2=word, 3=double)
.ascii Store the string in the Data segment but do not add null terminator

.asciiz Store the string in the Data segment and add null terminator

.byte Store the listed value(s) as 8 bit bytes

.data Subsequent items stored in Data segment at next available address

.double Store the listed value(s) as double precision floating point

.end_macro |End macro definition. See .macro

.eqv Substitute second operand for first. First operand is symbol, second operand is expression (lik
extern Declare the listed label and byte length to be a global data field

.float Store the listed value(s) as single precision floating point

.globl Declare the listed label(s) as global to enable referencing from other files

.half Store the listed value(s) as 16 bit halfwords on halfword boundary

.include Insert the contents of the specified file. Put filename in quotes.

.kdata Subsequent items stored in Kernel Data segment at next available address

LKLext | Subsequent items (instructions) stored in Kernel Text segment at next available address
.macro Begin macro definition. See .end_macro

.set Set assembler variables. Currently ignored but included for SPIM compatability
.Space Reserve the next specified number of bytes in Data segment

.text Subsequent items (instructions) stored in Text segment at next available address
.word Store the listed value(s) as 32 bit words on word boundary

I ——

CSUN 23 sorrware
MIPS Assembly & e

2016-2023
COMP122
MIPS Lab1l —
cait
Text Segment Labels
Bkpt Address Code Basic Source Label Address A
0x00400000 0x24020004 addiu $2,%$0,4 10: 1i $v@, 4 #print code= mips-LablA-Hello.asm
0x00400004 0x3c011001 lui $1,4097 11: 1w $t1, hello heap 0x10010000
0x00400008 0x8c290004 lw $9,4(51) hello 0x10010004
0x0040000c 0x3c011004 lui $1,4100 12: 11 $t2, 0x10040004
0x00400010 0x342a0004 ori $10,%1,4
B 0x00400014 0xad490000 sw $9,0($10) 13: sw $t1, ($t2) #store in memory: heap
B 0x00400018 0x01202020 add $4,%9, %0 15: add $a@, $tl1, $zero
0x0040001c 0x0000000c syscall 16: syscall
0x00400020 0x3c011001 lui $1,4097 17: W $t1, hello+4

0x00400024 0x8c290008 lw $9,8(51) 7| Data [v] Text

N
R

Data Segment

Address Value (+0) Value (+4) Value (+8) Value (+¢c) Value (+10) Value (+14) Value (+18) Value (+1c)
0x10010000 268697600 1819043144 1867980911 174353522 ('} ('} 0 0
0x10010020 0 0 0 0 0 0 0 0
0x10010040 ('} ('} 0 0 0 0 0 0
0x10010060 0 0 0 0 0 0 0 0
0x10010080 0 0 0 0 0 0 0 0
0x100100a0 0 0 0 0 0 0 0 0
0x100100c0 ('} ('} ('} '} '} ('} ('} [}
AvIAAIARAR n n n n n n n n

<>

v| Hexadefimal Addresses Hexadecimal Values ASCII

& © | 0x10010000 (.data)

CSUN

P& DR JEFF
25| soFTwaRrE

INDIE APPDEVELOPER

T MIPS Assembl S
NORTHRIDGE 2016'2023
COMP122
MIPS Lab1l —
Basic Instructions Extended (pseudo) Instructions Directives | 54« Exceptions M
Table of Available Services
: Code
Service in $v0 Arguments Result
print integer 1 a0 = integer to print
print float I 2 | $f12 = float to print
print double | 3 |$f 12 = double to print

. . I "an = address of
PELNE SIINE - ull-terminated string to print
read integer 5 $v0 contains integer read
read float 6 $£0 contains float read
read double $f0 contains double read
$a0 = address of input buffer
read string 8 $al = maximum number of See note below table
characters to read
sbrk (allocate heap g |$a0 = number of bytes to $v0 contains address of allocated memory
memory) allocate

exit (terminate
execution)

print character | 11 |$a0 = character to print

See note below table

sTATEUNIVERS 7 MIPS Assem b I Y ©ef Drobman

COMP122 MIPS Lab1l —

Basic Instructions Extended (pseudo) Instructions Directives Syscalls Exceptions m

.macro, .end_macro,.eqv and .include directives are new in MARS 43

Introduction to macros

Patterson and Hennessy define a macro as a pattern-matching and replacement facility that provides a simple mechanism to name a
frequently used sequence of instructions [1]. This permits the programmer to specify the instruction sequence by invoking the macro. ’
requires only one line of code for each use instead of repeatedly typing in the instruction sequence each time. It follows the axiom "de
once, use many times,” which not only reduces the chance for error but also facilitates program maintenance.

Macros are like procedures (subroutines) in this sense but operate differently than procedures. Procedures in MIPS assembly language
follow particular protocols for procedure definition, call and return. Macros operate by substituting the macro body for each use at the
of assembly. This substitution is called macro expansion.. They do not require the protocols and execution overhead of procedures.

As a simple example, you may want to terminate your program from a number of locations. If you are running from the MARS IDE,
will use system call 10, exit. The instruction sequence is pretty easy

11 $v0,10
syscall

but still tedious. You can define a macro, let's call it done, to represent this sequence

.macro done
11 $v0,10

syscall System.exit(0)
.end_macro

then invoke it whenever you wish with the statement
jd Break?
one

~ u 1

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122
e

MARS

IE3Y

MIPS X-Ray - Animation of MIPS Datapath

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

X-Ray

Y

ADD

ONTROL

A\ A

'REGISTERS

DR JEFF
CSUN &5 soFTwARE
eSO MARS O eff Brobmman

2016-2023

MP122
-0 MARS (miPS Assembler and Runtime Simulator) —— Tools ——
@
" WRITE

CONTROL
CmesisteR I8 - Ny
| ADDRESS 1
| 1 .
| : o REGISTER1 .
|
| S °™ REGISTER 2 .
. DECODER - -
' 31 [DATA <
' CTRL
| ~ ° . T REGISTER 31 o
L o REGISTER 32 o,

| REGISTER "
' ADDRESS 2
: REGISTER
| WRITE)
| U
| X
! WRITING

DATA

' DR JEFF
CSUN IQI SOFTWARE
CALIFORNIA M A RS @)INfgf}'PBL;-EOVE%PaE;
T NORTHRIDGE

2016-2023
COMP122

Tools —

'Name
Text Segment l |

¢0 luq
Bkpt Address Code Basic Source O @ Instruction Counter, Version 1.0 (Felipe Lessa)

0x00400020 0x342a0008 ori $16,$1,0x00000008 | i i i ‘
| 0x00400024 0xad490000 sw $9,0x00000000($10) 14: sw $t1, ($t2) #store in memory: heap Countmg the number of instructions executed

i@ 0x00400028 0x2402000b addiu $2,$0,0x0000000b 16: 1i $v@, 11 #print code= Instructions so far: 17
@ 0x0040002c 0x01202020 add $4,%9,$0 17: add $a@, $tl1, $zero
| 0x00400030 0x0000000C syscall 18: syscall
| 0x00400034 0x3c044142 lui $4,0x00004142 19: lui $a@, 0x4142 R-type: 5 — 20%
_ | 0x00400038 0x0000000c syscall 20: syscall I-type: 12 — O
0x0040003c 0x00000000 nop 21: nop
| 0x00400040 0x0000000d break 0x00000000 22: break 0 #System.exit(0) J-type: 0 0%
F Tool Control

(Disconnect from MIPS] Reset Close
Data Segment J

@ DR JEFF
CSUN 24| soFrware
. |V| A RS S orrommoren
NORTHRIDGE

2016-2023
COMP122
Tools —

BHT Simulator ~ Run speed at max (no interaction)

00000 @

Data Cache Simulator L [TR T [B | Oy

Digital Lab Sim
|

Floating Point Representation
Instruction Counter

Labels
Instruction Statistics - T T T—y
; Introduction to Tools Kt code= T —
1 Keyboard and Display MMIO Simulator e LB s
| Mars Bot heap 0x10010000
‘ | hello 0x10010004
1 Memory Reference Visualization ‘L%M
- MIPS X-Ray T e
2 ' , , Jersi
; ScavengerHunt o .
; Screen Magnifier Digital Lab Sim
1001 lui $1,4097 s i [
2008 lw $9,8($1) 0 1 2 3
: ' %
Value (+4) Value (+8) 8 9 a b 1

3697600 1819043144 18¢€ 3

0 0

0 0 | C d e f

0) | , S :

0 0 \ Tool Control

0)

()}) | Connect to MIPS _ Reset _ Help _ Close

n n

sTATE NSy MIPS Dev Boa rd ©ef Drobman
COMP122
MIPS Creator CI20

The MIPS Creator CI20 platform is a feature laden MIPS/Imagination Linux and Android development system. It
incorporates an Ingenic JZ4780% SoC which includes a 1.2GHz dual core MIPS32& processor and Imagination
PowerVR& SGX540 GPU. The CI20 board provides comprehensive connectivity, multimedia capabilities and
substantial RAM and flash. Cl20 is preloaded with Debian7, and other distros are being packaged to be available
for download soon.

CI20 is an open platform with technical manuals, schematics and source code freely downloadable.

CI20 is still available to order for around £65 or $85.

Ge,ttlng Started The Ci20 board (V1 Green) &1
Beginners Guide Technical Stuff Download Page
« Which helps answer the « What are the specs of the * Where do | get the
questions: board? documentation?
» Do | just plug it in? « What SoC does the board use?|| e Can | get the schematic?
« What can | do with it out of « Where can | find board « Where do | get new software
the box? schematics and SoC from?
« What can | plug in and documentation? « Is there source code?
where?

« Can | update the software?
« Where can | get help?
» Headless setup

« Troubleshooting guide

The Ci20 board (V1 Purple) &1

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Lab

)

ARM Siim

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Sim

Dr Jeff

=] ARMSim# - The ARM Simulator Dept. of Computer Science

O X
File View Cache Debug Watch Help
(6=(Em » m | D
i CodeView v X |
General Purpose Floating Point &
| Hexadedimal | z
 Unsonedoeamal -
| Signed Decinal |
_/ OutputView | WatchView | v X
Console

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN : B soFrware
T ARM Sim O eff Brobman

2016-2023
COMP122

tinyurl.com/armsimcsun

a5 About ARMSIim# — O X
ARMSIm - the ARM Simulator

ARMSimg Version20.1(2 v.2.0.1

University of Victoria

Produced by:

Dr. Nigel Horspool

Dale Lyons

Dr. Micaela Serra

Bill Bird

Department of Computer Science.

Copyright 2006--2015 University of Victoria.

éimulaﬁn 1 ARMvS ihstruction architecture with Vector
Floating P© apport and a Data/Instruction Cache
simulation.

AAAAAAAAAAA
STATE UNIVERSITY

COMP12

DR JEFF

252 soFTwARE
ARM SI m SeEnrE
2016-2023

tinyurl.com/armsimcsun

ARMSIm# version for Windows

The files and installation instructions for use on Windows are provided here.

ARMSim# version 2.1 for Linux

The files and installation instructions for use on Linux are provided here.

ARMSim# version 2.1 for Mac OS X

The files and installation instructions for use on Mac OS X are provided here.

NOT available for Mac!

CSUN @A) sorrware
mSuromIn Mac O S X e

2016-2023
COMP122

NOT available for Mac!

2. Current Distribution Status

ARMSIrn#I version 2..1 Is available for Wifidows. It has been tested on Windows 8.1.

It has been tested on Ubuntu Linux
does not work on Linux (due to

er Mono. The docking windows feature available on Windows
fferences in its support for NET Forms).

It doeslnot yet work on Mac OS X Japparently due to a difference in the way that scrolling text wirdows
are implemented in Mono on a Mac OS X system.

CSUN B sorrware
mSuromIn Mac O S X by fiariia

2016-2023
COMP122

Installing ARMSim# on Mac OS X

Choice #1: Run Windows via Dual Boot or Virtualization Software

If you need to run more Windows applications than just ARMSim#, your easiest route is to install the
Windows operating system on your Mac computer. Once Windows is installed, you can follow the
instructions provided to Windows users for installing ARMSim#. However you do need to own a

licensed copy of Windows. .
Don’t do this!

* Use Apple’s BootCamp software to configure your Mac computer as a dual-boot machine. Each
time you power up the computer, you will have a choice as to whether you want to run the Mac
OS X operating system or the Windows operating system.

The possibilities for installing Windows include:

* Install virtualization software as an application on Mac OS X. The virtualization software will cre-
ate a virtual machine into which you can install the Windows operating system.

The possible choices for virtualization software include Parallels (from www.parallels.com),
QEMU (from www.gemu.org) and Oracle VirtualBox (from www.virtualbox.org).

* Or both of the above ... after using BootCamp to create a dual boot machine, one can also install
Parallels under Mac OS X and have the best of both wotlds.

Choice #2: Use Mono on Mac OS X

The open source project, Mono, is an implementation of Microsoft’s NET framework. It can be
installed as a Mac OS X application and used to execute the code of the ARMSim# application.
Warning! Mono does not currently provide all the libraries needed by the docking windows feature

DR JEFF

CSUN . I . Pj SOFTWARE
e \1rtual Win d ows 11 on Ma © Jeff Drobman

COMP122

| ran Windows 11 on an M1 Mac: Here's my
experience

By Shubham Agarwal published 27 days ago

We put Parallels’ Windows 11 virtual machine to the test on an M1
Mac Mini to see if it's worth your money.

0000

#PulBO.CH

-008 TN B g A ELEE

Windows 11 on a Mac (Image credit: Parallels)

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

Virtual Windows 11 on Ma

3 DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

How stable is a Windows 11 virtual machine on an
M1 Mac?

Windows 11 on Parallels was remarkably stable for a virtual machine, and that
allowed me to use it as my primary workspace.

Mad

Calendar Microsoft Store

« B0 e
Twitter Spotify

Solitaire

BE 6 0/

TikTok

9 Steam Y Question
Recently sdded | 19hago

-‘ Screenshot 2021-12-02 at 115335 A . Screenshot 2021-12-01 at 2.34.48 PM
19h ago 19h ago

Y Dune2021.1080p WEBRip 1264 AAC
19h ago

Windows 11 on a Mac (Image credit: Parallels)

Everything from Windows 11's refreshed animations to resource-intensive
multitasking worked as Microsoft intended it to. Plus, it can wake up from sleep

sTATEUNIVERS 7 ARMsim 2.1 ©ef Drobman

COMP122

Introducing ARMSim# Versior 2.1 |

1. What is Different?
Version 2.1 is a major re-design of ARMSim# in three main respects:

1. Instead of parsing and assembling ARM source code itself, ARMSim# now invokes r.h
|Asscmblcr|program as to perform the task.

2. Instead of using a set of extended SWI instructions based on the ARM RDI family to perform

I/O and other system tasks, a new set known as the IA.ngcl SWIIinstructions has been adopted as
the default set.

3. The undocumented support for scripting has been replaced by an extended set of command-line

options. e ————
Each of these " |.’referenc5Form T »
Some tidying ey Memory | Cache | Plgins | N k
Assembly Description
M LegacySWilnstru.. ARMSim exe Legacy SWI extension instructions

AngelSWiinstructi... ARMSim exe Angel RDI SWI extension instructi

CSUN : B soFrware
ARMsim 2.1 e

COMP122 2016-2023
Angel SWI

Adoption of the Angel Extended SWI Instruction Set

The SWI instruction family previously used by ARMSim# was ad hoc and inconsistent because addi-

tional features were added piecemeal. This SWI family is s/ supported and we call it the Legacy SWI
Family.

However, we encourage everyone to switch to the Angel SWI Family instead. The reason to do this
is that it opens up the possibility of calling functions in the Standard C Library. Many functions in the
C Library make calls to the operating system (typically for file and standard I/O access). The version
of the C library distributed by Mentor Graphics uses the Angel SWT instruction to request the special

services from an operating system.

A disadvantage of the Angel SW1 is that the operations are lower level than those provided in the Leg-
acy SWI set. For example, the Legacy SWI provided the ability to input or output decimal numbers,
whereas the Angel SWI supports input and ouput of single characters only. As partial compensation,
a file containing code to perform some common operations including I/O of numbers with the Angel

SWI has been provided. Alternatively, functions such as printf and scanf in the C Library can be in-
voked.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

ARMsim 2.1

COMP122
Table 1: Summary of Angel SWI Operations Angel =00
RO | R1? Description Operands in Memory (at address provided by R1)
0x01 M Open a File Filename address; filename length; file mode
0x02 M | Close a File File handle
0x05 M Write to File File handle; buffer address; number of bytes to write
0x06 M Read from File File handle; buffer address; number of bytes to read
0x09 M |IsaTTY? File handle
0x0A M File Seek File handle; offset from file start
0x0cC M | File Length File handle
0x0D M | Temp File Name | Buffer address; unique integer; buffer length
Ox0E M | Remove File Filename address; filename length
0xOF M Rename a File Filename 1 address; length 1; Filename 2 address; length 2
0x10 - Execution Time
0x11 - Absolute Time
0x13 - Get Error Num
0x16 A | Get Heap Info
0x18 | Code | Exit Program

a. M indicates the address of the block of operands in memory; A indicates the address of a four word block of
memory to receive a result; Code indicates a termination code for the program.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman

CSUN . @A) sorrware
T, A R |V| Sim 2 . 1 o

122 2016-2023
MP
0 Angel SWI —

@ Example of using the Angel SwI operations

@ omitted code
ldr R1, =OpenParams @ parameters block for OPEN
mov RO, #0x01 @ code number for Open File
SWi 0x123456 @ open a text file for 1input
cmp RO, #0 |
t OpenError @ branch if there was an error
ldr R1, =ReadParams
str RO, [R1] @ save the file handle 1into
@ parameters block for READ
mov RO, #0x06 @ code number for Read File
swi 0x123456 @ read from the text file
| cmp RO, #0 |
bne ReadError @ branch if there was an error

g\ DR JEFF

CSUN . IQI SOFTWARE
STATE URIVERSETE R r r l © Jeff Drobman
NORTHRIDGE A IVI SI eff Drobman

2016-2023
COMP122

Assembly Manual

Table of Contents Using as

e 1 Overview

1.1 Structure of this Manual

1.2 The GNU Assembler

1.3 Object File Formats

1.4 Command Line

1.5 Input Files

1.6 Output (Object) File

1.7 Error and Warning Messages

e 2 Command-Line Options

2.1 Enable Listings: -a[cdghlns]

2.2 —-—alternate

23 -p

2.4 Work Faster: -f

2.5 .include Search Path: -1 path

2.6 Difference Tables: -k

2.7 Include Local Symbols: -L

2.8 Configuring listing output: —--1isting

2.9 Assemble in MRI Compatibility Mode: -M
2.10 Dependency Tracking: --MD e 3 Syntax

2.11 Output Section Padding ;
2.12 Name the Object File: —o 3.1 Preprocessing
: 3.2 Whitespace

o
2.13 Join Data and Text Sections: -R o
2.14 Display Assembly Statistics: --statistics o 3.3 Comments
o
o

(o}

© 0 0 0 ©

o]

(o}

2.15 Compatible Output: —-traditional-format 34 Symbols

2.16 Announce Version: -v 3.5 Statements
2.17 Control Warnings: -w, --warn, --no-warn, --fatal-warnings

2.18 Generate Object File in Spite of Errors: -z

© 00000 0 0CO0C O OO0OO0OO0OO0O OO O°

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Lab

CECS IT Labs

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN B sorrware
mSuromIn C E CS La b S e
NORTHRIDGE

2016-2023
COMP122
Remote Access to CECS Computer Labs
Henry, Emil P <emil.henry@csun.edu> Today at 12:16 PM
To: medept-l; ceamdept-l; ecedept-l; compsci-l; ecsstaff-l; msemdept-|

Good Afternoon,
| am hoping that all of you are safe and doing well.

HP ZCentral Boost is a product that allows one to be able to connect to one of the workstations in some of the CECS
labs, and run software on that workstation. This is similar to Windows Remote Desktop, and replaces a product called
Remote Graphics Software (RGS) that some of you might remember. There are a number of software packages that are only
licensed to be installed on the machines in the labs, and cannot be installed on personal machines. The Box Share linked
below has the instructions and software needed. The software can be installed on Windows, MacOS and LINUX laptops and
desktops. Please pass this on to your students.

https://mycsun.box.com/v/HPZCentralBoost

Please let me know if you have any questions. The documentation has an email address (jd-helpdesk@csun.edu) for
HP ZCentral Boost and Connect related questions.

Regards,

Emil

i DR JEFF
CSUN 24| soFTwaRE
mSuromIn C E C S | 3 b S S
NORTHRIDGE 2016-2023
COMP122
Computer Accounts in the CECS Labs

Henry, Emil P <emil.henry@csun.edu> Today at 12:21 PM

To: medept-l; ecedept-l; ceamdept-l; compsci-l; msemdept-l; ecsstaff-l

Dear Faculty and Staff:

As in the past semesters, students will be able to use their CSUN username and password to log into the
computers in the CECS labs. Their campus U: Drive and their CECS Z: drive (COMP1@@ students will not get the Z:
Drive) will both be accessible through their Computer on the Desktop of Windows machines. On the UNIX machines
their CECS home directory (Z: Drive) will be available. On the Macs they need to mount their Z: Drives manually
through the GUI. In case they do not get their Z: drive, please ask them to call our office at 818-677-3919.
Information Systems Group hours are Mon - Thu 7.30 a.m. to 9 p.m., Fri 7.30 a.m. to 5 p.m. and Sat 8.3@ a.m. to
4.30 p.m.

Most students use their email address to log into the portal. When they try to log into any machines they
should use their username (their initials and a set of numbers : xyz12345). In case the student does not know it,
you can find it out by going to the following site.

http://www.csun.edu/account

Click on "Forgot User ID". The combination that seems to work best is the First Name, Last Name and Month
and Day of Birth. This should give their usernames.

I would recommend that all students be asked to reset their password at the beginning of the semester so
that their account information is current and updated. Also, please note that if the student does not know their
password, we (the Information Systems Group) will not be able to reset it. They would have to call the Campus
Helpdesk at 818-677-140@. It is open from Mon -Thu 8 a.m. to 8 p.m., Fri. 8 a.m. to 5 p.m. and Sat & Sun 12 p.m. to
5 p.m.

Please note that if the student has never been able to login successfully to a Windows machine in the CECS
labs that most likely he/she has never reset their CSUN password. The password can be reset through the Campus
Portal, under the Technology Tab.

Best regards,

Emil

- DR JEFF

8 SOFTWARE

pChuroria |_a b S orrommoren
RRRRRRRRRR

2016-2023
COMP122

GNU

2CC
° C/Cs+ (.c/.cpp)
° Asim (.asm)

CSUN : B4 soFrware
r AT GNU - MinGW O et Bramman

2016-2023

COMP122

SOURCEFORGE

MinGW Installation Manager Setup Tool

mingw-get version 0.6.2-beta-20131004-1

Written by Keith Marshall
Copyright © 2009-2013, MinGW.org Project
http://mingw.org

Tha n k you fo r d OW| This is free software; see the product documentation or source code, for copying and

redistribution conditions. There is NO WARRANTY; not even an implied WARRANTY OF
MERCHANTABILITY, nor of FITNESS FOR ANY PARTICULAR PURPOSE.

Spread the Word: ' f This tool will guide you through the first time setup of the MinGW Installation Manager
software (mingw-get) on your computer; additionally, it will offer you the opportunity to
install some other common components of the MinGW software distribution.
After first time setup has been completed, you should invoke the MinGW Installation

Manager directly, (either the CLI mingw-get.exe variant, or its GUI counterpart,
Keep Me U p ate. according to your preference), when you wish to add or to remove components, or to

upgrade your MinGW software installation.
~ " *1inGW - Minimalist GNU foi

n View Licence Install Cancel

v smesie msmm il ad e

P DR JEFF

CSUN Q SOFTWARE

ARM GNU-A e
S NORTERIDGE

2016-2023
COMP122

arm Developer IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTERNET OF THINGS COMMUNITY SUPPORT DOCUMENTATION powNLoADs Q ;

GNU-ADownloads

Overview GNU-A ¥ GNU-RM ~ Architecture Support Specifications

GNU Toolchain fol
Downloads the A-profile

The GNU Toolchain for the Cortex-A Family is a ready-to-use, open |
source suite of tools for C, C++ and Assembly programming targeting ArCh | teCt ure

processors from the Arm Cortex-A family and implementing the Arm A-

profile architecture. Version 8.3-2019.03

The toolchain includes the GNU Compiler (GCC) and is available free of Released: March 29, 2019
charge directly for Windows and Linux operating systems. Follow the

links on this page to download the correct version for your development

environment.

See the downloaded package's Release Notes (linked from this page) for
full installation instructions.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM GNU-A

arm Developer IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTEI

Overview GNU-A ¥ GNU-RM ~ Architecture Support Specification

In this release

Windows (i686-mingw32) hosted
cross compilers

AArch32 bare-metal target (arm-eabi)

o gcc-arm-8.3-2019.03-i686-mingw32-arm-eabi.tar.xz
o gcc-arm-8.3-2019.03-i686-mingw32-arm-eabi.tar.xz.asc

AArché4 bare-metal target (aarché4-elf)

o gcc-arm-8.3-2019.03-i686-mingw32-aarché4-elf.tar.xz
o gcc-arm-8.3-2019.03-i686-mingw32-aarché4-elf.tar.xz.asc

x86 64 Linux hosted cross compilers

AArch32 bare-metal target (arm-eabi)

o gcc-arm-8.3-2019.03-x86 64-arm-eabi.tar.xz
o gcc-arm-8.3-2019.03-x86 64-arm-eabi.tar.xz.asc

@M DR JEFF
E SOFTWARE

© Jeff Drobman
2016-2023

gce —

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Lab

Eclipse

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

DR JEFF
25 soFTwaARE

CSUN .
~ INDIEAPPDEVELOPER
Aoy Ech se K e
NORTHRIDGE 2016'2023

COMP122

(ECLIPSE

FOUNDATION

Home / IDE

Desktop IDES

Eclipse is famous for our Java Integrated Development Environment (IDE), but our C/C++ IDE and
PHP IDE are pretty cool too. You can easily combine language support and other features into any
of our default packages, and the Eclipse Marketplace allows for virtually unlimited customization

and extension.

CSUN

[]
CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

&% DR JEFF
25| soFTWARE

© Jeff Drobman
2016-2023

(ECLIPSE

Home / Downloads / Packages / Release / Eclipse IDE 2019-06 / R

Eclipse Installer Eclipse Packages Eclipse Developer Builds ~

Try the Eclipse Installer 2019-06 R

The easiest way to install and update your Eclipse
Development Environment.

< 2,805,663 Downloads

Eclipse IDE 2019-06 R Packages

Eclipse IDE for C/C++ Developers

QC” 235MB 340,602 DOWNLOADS

An IDE for C/C++ developers with Mylyn integration.

Download

Mac OS X 64 bit
Windows 64 bit
Linux 64 bit

Windows 64-bit
Mac Cocoa 64-bit
Linux 64-bit

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF
SOFTWARE

Eclipse Platform S

2016-2023

Eclipse platform overview

The Eclipse platform itself 1s structured as subsystems which are implemented in one or more plug-ins.
The subsystems are built on top of a small runtime engine. The figure below depicts a simplified view.

¢ Eclipse Platform

¢ Workbench

(JFace

SWT

Workbench

The term Workbench refers to the desktop development environment. The Workbench aims to achieve

seamless tool integration and controlled openness by providing a common paradigm for the creation,
management, and navigation of workspace resources.

CSUN

[]
CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

3 Resource - Eclpse SOK

File Edit Navigate Search Project Run Window Help

ES= 1 T QA e et e e

Quick Access

e

| 15 | (5 Resouree)

[Project Explorer 52 = 0

<}=v
(=3

o= Outline &2

An outline is not available.

0 items selected

2| Tasks 52

0 items

= 08

~

Description

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Lab

MISC IDE’S

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF
25| soFTwaRrE

INDIE APPDEVELOPER
© Jeff Drobman

2016-2023

Boost your skills
in embedded
development!

Let our experts guide you.

Upcoming IAR Academy course: Efficient programming & advanced
debugging

When: November 13-14, 2019
Where: Foster City

This course explores the internals of a compiler and debugger, and provides useful tips
and tricks on how to get the most out of your development projects. It focuses on
advanced debugging techniques and how to find efficient ways to get rid of bugs.

The course includes two full days of in-depth lectures and hands-on training, course
material, and lunch.

During two intensive days of lectures and hands-on training, you will learn about:

Compiler technology

Coding techniques

Best practices

Mastering stack and heap

Linking applications

Efficient and advanced debugging

Code analysis

Power debugging on Arm Cortex-M3/M4
Power optimization

Using trace on Arm Cortex-M3/M4

