= DR JEFF
CALIFORNIA Iﬁ'soFTWARE

STATE UNIVERSITY
NORTHRIDGE © Jeff Drobman

2016-2023

CSUN

COMP122 Spring 2023 Rev 1-23-23

Lectures on Vol 3

Computer Architecture
& ASSEMBLY Programming

By
Dr Jeff Drobman

website m drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

sTATE NSy Index ©Jef robmar
COMP122 Viell
***ISA & Assembly Code = 3
= MIPS 5
= ARM > 44

**0ld CISC MPU’s = 72
“*Interrupts =2 79
**Other HW (1/0) = 103

“*ICU-> 116

= FSM
= uProgrammed
= Am2900 Bit-slice = 126

¢ RISC Pipelines = 137
= Clock Gen w/PLL > 144

“*JTAG - 152
“*JEDEC - 159

CSUN : 823 sorrware
Section

2016-2023
COMP122

ISA
Assembly Code

DR JEFF

CSUN . . |82 soFTWARE
G Baseline Instruction Set™ <
NORTHRIDGE 2016-2023
COMP122 Rev Aug 2021

Computation Memory Program Control /O
s ALU +* Reg-Re s JUMP < 1/0
g-heg
= ADD = MOV = JUMP/GOTO = IN oD
= SUB *** Reg-Mem ** BRANCH = OuT
= AND LOAD [y BRA ** Mem Mapped
= OR STORE BRCC = MOV PORT
. X%R = MOV = LOOP = LOAD/STORE
= NOT M ode
. * Mem-Mem « CALL NEW
< MULT/DIV [opt] - MOV [gise = CALL/CALR/JAL
“ BIT & Stack = RET/RETFIE
" SET/CLR = PUSH < NOP
= TEST = POP
s* COMPARE
= CMP System Control
o SHIFT % Reset
= SHIFT (A, L) = RESET
" ROTATE % Power

= SLEEP/HALT

= DR JEFF
CSUN &5 soFTwaRrE
mChuronNe | S A e

NORTHRIDGE 2016-2023
COMP122

**MIPS | (32-bit) [R2000/3000]

) +»MIPS32 (32%it, MARS)
**MIPS Il (64-bit) [R4000]

< MIPS64 (64%it)
» Superset of 32-bit ISA
» Adds 64-bit ops (“Double”)

» See separate slide set “MIPS”

(@GS DR JEFF
CSUN 85 soFrware
. MIPS O et Brobman
NORTHRIDGE

2016-2023
COMP122 S

MIPS microprocessors | edit]

The first MIPS microprocessor, the R2000, was announced in 1985. It added multiple-cycle multiply and
divide instructions in a somewhat independent on-chip unit. New instructions were added to retrieve the
results from this unit back to the register file; these result-retrieving instructions were interlocked.

The R2000 could be booted either big-endian or little-endian. It had thirty-one 32-bit general purpose
registers, but no condition code register (the designers considered it a potential bottleneck), a feature it
shares with the AMD 29000 and the Alpha. Unlike other registers, the program counter is not directly
accessible.

The R2000 also had support for up to four co-processors, one of which was built into the main CPU and
handled exceptions, traps and memory management, while the other three were left for other uses. One of
these could be filled by the optional R2010 FPU, which had thirty-two 32-bit registers that could be used as
sixteen 64-bit registers for double-precision.

CSUN

CALIFORNIA

MIPS

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

STATE UNIVERSITY ©JeffDr0bman
NORTHRIDGE 2016_2023
COMP122
MIPS Technologies, Inc.

MIPS Technologies

From Wikipedia, the free encyclopedia
(Redirected from MIPS Computer)

MIPS Technologies, Inc., formerly MIPS Computer Systems, Inc., was an American fabless semiconductor
design company that is most widely known for developing the MIPS architecture and a series of RISC CPU chips
based on it.['2] MIPS provides processor architectures and cores for digital home, networking, embedded, Internet
of things and mobile applications.®Il4]

MIPS Technologies, Inc. is owned!®! by Wave Computing, who acquired it from Tallwood MIPS Inc., a company
indirectly owned by Tallwood Venture Capital. Tallwood bought it on 2017-10-25 from Imagination Technologies, a
UK-based company best known for their PowerVR graphics processor family.®] Imagination Technologies had
previously bought MIPS after CEVA, Inc. pulled out of a bidding on 2013-02-08.

MII=S

TEEC T H:N Ok

| E
Logo

The former MIPS Technologies building in
Santa Clara

Type
Industry
Fate

Founded
Founder
Defunct
Headquarters

Key people
Products

Number of
employees

Parent

Subsidiary
RISC microprocessors

Acquired in 2018 by Wave
Computing

1984; 36 years ago

John L. Hennessy #

2013 #

Sunnyvale, California, U.S.
Sandeep Vij

Semiconductor intellectual
property

up to 50 (according to LinkedIn
in May 2018), previously 146
(September 2010)

Wave Computing #

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

@ DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023
COMP122

History |edit] Defunct 2013 #

Headquarters Sunnyvale, California, U.S.
MIPS Computer Systems Inc. was founded in 1984[718] by a group of researchers from Stanford University that — o e
included John L. Hennessy and Chris Rowen. These researchers had worked on a project called MIPS (for))

Products Semiconductor intellectual
Microprocessor without Interlocked Pipeline Stages), one of the projects that pioneered the RISC concept. Other property
principal founders were Skip Stritter, formerly a Motorola technologist, and John Moussouris, formerly of IBM.[®] Number of up to 50 (according to LinkedIn

- . L employees in May 2018), previously 146

The initial CEO was Vaemond Crane, formerly President and CEO of Computer Consoles Inc., who arrived in (September 2010)
February 1985 and departed in June 1989. He was replaced by Bob Miller, a former senior IBM and Data General Parent Wave Computing #
executive. Miller ran the company through its IPO and subsequent sale to Silicon Graphics. Website www.mips.com &

In 1988, MIPS Computer Systems designs were noticed by Silicon Graphics (SGI) and the company adopted the

MIPS architecture for its computers.['%) A year later, in December 1989, MIPS held its first IPO. That year, Digital Equipment Corporation (DEC) released a Unix

workstation based on the MIPS design.

After developing the R2000 and R3000 microprocessors, a management change brought along the larger dreams of being a computer vendor. The company
found itself unable to compete in the computer market against much larger companies and was struggling to support the costs of developing both the chips and
the systems (MIPS Magnum). To secure the supply of future generations of MIPS microprocessors (the 64-bit R4000), SGI acquired the company in 1992('"] for

$333 million!'2I3] and renamed it as MIPS Technologies Inc., a wholly owned subsidiary of SGI.['4]

During SGl's ownership of MIPS, the company introduced the R8000 in 1994 and the R10000!"%] in 1996 and a follow up the R12000 in 1997.['6] During this time,
two future microprocessors code-named The Beast and Capitan were in development; these were cancelled after SGI decided to migrate to the Itanium
architecture!'”! in 1998.1'21'8] As a result, MIPS was spun out as an intellectual property licensing company, offering licences to the MIPS architecture as well as

microprocessor core designs.

(G DR JEFF
CSUN IQI SOFTWARE
. MIPS O et Brobman
NORTHRIDGE

2016-2023
COMP122

Company timeline |edit)

Year = $

1981 Dr. John Hennessy at Stanford University founds and leads Stanford MIPS, a research program aimed at building a
microprocessor using RISC principles.

1984 MIPS Computer Systems, Inc. co-founded by Dr. John Hennessy, Skip Stritter, and Dr. John Moussouris(4?]

1986 First product ships: R2000 microprocessor, Unix workstation, and optimizing compilers

1988 R3000 microprocessor

1989 First IPO in November as MIPS Computer Systems with Bob Miller as CEO

1991 R4000 microprocessor

1992 SGI acquires MIPS Computer Systems. Transforms it into internal MIPS Group, and then incorporates and renames it
to MIPS Technologies, Inc. (a wholly owned subsidiary of SGI)

1994 R8000 microprocessor

1994 Sony PlayStation released, using an R3000 CPU with custom GTE coprocessor

1996 R10000 microprocessor; Nintendo 64 released, incorporating a cut down R4300 processor.

1998 Re-IPO as MIPS Technologies, Inc

1999 Sony PlayStation 2 released, using an R5300 cpu with custom vector coprocessors

2002 Acquires Algorithmics Ltd, a UK-based MIPS development hardware/software and consultancy company.

G Acqu.ire's Fir_st S_i-licon Soluti9ns (FS?), a Lake Oswego, Qregon company as a wholly owned subsidiary. FS2 .

6, 2005 specializes in silicon IP, design services and OCI (On-Chip Instrumentation) development tools for programming,
testing, debug and trace of embedded systems in SoC, SOPC, FPGA, ASSP and ASIC devices.

2007 MIPS Technologies acquires Portugal-based mixed-signal intellectual property company Chipidea

;(ext:;uary MIPS Joins Linux Foundation(44]

;ﬂ(:’gs' Chipidea is sold to Synopsys.

June 2009 | Android is ported to MIPS4S]

@rwn) DR JEFF
CSUN 23 soFTwARE
. |V| | PS oesrommoren
NORTHRIDGE

2016-2023
COMP122 o,

R3000: 32-bit CPU - pipelined (5 stages)

The R3000 succeeded the R2000 in 1988, adding 32 KB (soon increased to 64 KB) caches for instructions

and data, along with support for shared-memory multiprocessing in the form of a cache coherence protocol. While there were flaws in the R3000s
multiprocessing support, it was successfully used in several successful multiprocessor computers. The R3000 also included a built-in MMU, a common feature
on CPUs of the era. The R3000, like the R2000, could be paired with a R3010 FPU. The R3000 was the first successful MIPS design in the marketplace, and
eventually over one million were made. A speed-bumped version of the R3000 running up to 40 MHz, the R3000A delivered a performance of 32 VUPs (VAX
Unit of Performance). The MIPS R3000A-compatible R3051 running at 33.8688 MHz was the processor used in the Sony PlayStation though it didn't have FPU
or MMU. Third-party designs include Performance Semiconductor's R3400 and IDT's R3500, both of them were R3000As with an integrated R3010 FPU.
Toshiba's R3900 was a virtually first SoC for the early handheld PCs that ran Windows CE. A radiation-hardened variant for space applications, the Mongoose-V,
is a R3000 with an integrated R3010 FPU.

The R4000 series, released in 1991, extended MIPS to a full 64-bit architecture, moved the FPU onto the main die to create a single-chip microprocessor, and
had a high clock frequency of 100 MHz at introduction. However, in order to achieve the clock frequency, the caches were reduced to 8 KB each and they took
three cycles to access. The high operating frequencies were achieved through the technique of deep pipelining (called super-pipelining at the time). The
improved R4400 followed in 1993. It had larger 16 KB primary caches, largely bug-free 64-bit operation, and support for a larger L2 cache.

MIPS, now a division of SGI called MTI, designed the low-cost R4200, the basis for the even cheaper R4300i. A derivative of this microprocessor, the NEC
VR4300, was used in the Nintendo 64 game console."!

R4000: 1%t 64-bit CPU = super-pipelined (8 stages)

Quantum Effect Devices (QED), a separate company started by former MIPS employees, designed the R4600 Orion, the
R4700 Orion, the R4650 and the R5000. Where the R4000 had pushed clock frequency and sacrificed cache capacity,
the QED designs emphasized large caches which could be accessed in just two cycles and efficient use of silicon area.

s DR JEFF
CSUN IQI SOFTWARE
peChronN |V| | P S oesrommoren
NORTHRIDGE 2016-2023
COMP122 o
Wiki ——

R4700

,ln
o‘\‘m‘
T AN
o e e

MEAANANAAANTAAADNNN
M aAAINIAANINDNMNAN

e T
7] Ba ke Ra i B Bt N B B Ba B B B Bo o Ry

N~ ™
i
e L)
e
-+ n
3 - N
Sl

IDT
79RV4700

¢
o
r
£
r
£ ~150GH
¢ YEOO13P
¢
4
¢
4
»

el e et e e T a T B I B B B S M0a

¢
4
C
C
C
C
c
C
4
C
C
o
[
€
¢
€
'

Bottom-side view of package of
R4700 Orion with the exposed silicon
chip, fabricated by IDT, designed by
Quantum Effect Devices

Top-side view of package for R4700 &J
Orion

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

\ DR JEFF
25| soFTwaRE

MIPS |- Base (R2000) Org = =i

2016-2023

Hennessy & Patterson MIPS

Figure 7.10.71: MIPS R2000 CPU and FPU (COD
Figure A.10.1).

FPU

1111 !
—| Memory |
HHHHHH HH
CPU
| |
CPU Coprocessor 1 (FPU)
Registers Registers
30 $0
[$31 —‘ $31
Arithmetic Multiply
unit divide
I—l—l Arithmetic
‘ Lo Hi unit

BadVAddr
Status

Coprocessor 0 (traps and memory)
Registers

1 Cause
\ EPC

CSUN . D) sorrware
ChTomy GP Re o] sters L ot

2016-2023
COMP122

Register use convention: /— Hennessy & Patterson -

The calling convention described in this section is the one used by the gcc compiler. The native MIPS compiler uses a more complex
convention that is slightly faster.

The MIPS CPU contains 32 general-purpose registers that are numbered 0—31. Register $0 always contains the hardwired value 0.

= Registers $at (1), $k0 (26), and $k1 (27) are reserved for the assembler and operating system and should not be used by user
programs or compilers.

= Registers $a0-$a3 (4—7) are used to pass the first four arguments to routines (remaining arguments are passed on the stack).
Registers $v0 and $v1 (2, 3) are used to return values from functions.

= Registers $t0-$t9 (8—15, 24, 25) are caller-saved registers that are used to hold temporary quantities that need not be preserved
across calls (see COD Section 2.8 (Supporting Procedures in Computer Hardware)).

» Registers $s0-$s7 (16—23) are callee-saved registers that hold long-lived values that should be preserved across calls.

= Register $gp (28) is a global pointer that points to the middle of a 64K block of memory in the static data segment.

= Register $sp (29) is the stack pointer, which points to the last location on the stack. Register $£p (30) is the frame pointer. The jal
instruction writes register $ra (31), the return address from a procedure call. These two registers are explain in COD Section A.7

(Exceptions and interrupts) R $a(0;3) args

Sat, Sk(0:1) reserved
Sv(0:1) values
St(0-9) temp

$s(0:7) saved

Sgp global ptr

Ssp stack ptr

Sfp frame ptr

Sra return addr

L)

J/ J/ J/ J/ J/ J/ J/ J/
0’0 0’0 0’0 0’0 0’0 0’0 0’0 0’0

CSUN : E)sorrware
Instruction Formats

2016-2023
COMP122 Wikipedia MIPS

The following are the three formats used for the core instruction set:

Type -31- format (bits) -0-
R opcode (6) rs(5) rt(5) | rd(5) @ shamt(5) | funct (6)
| opcode (6) | rs(5) rt(5) immediate (16)

J | opcode (6) I address (26)

Q “shamt” ::= shift amount (5 bits)
O “funct” ::= function (opcode extension — 6 bits)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

R

DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

R, | Formats

MARS

add $16,$9,$10 18: add $s0, $t1, $t2
Rs, R4 Rss Rs>

SsO = St1 + St2

laddi $10,$10,0x0000... 17: add $t2, $t2, 4

Im Ry Ry Im
$t0 8 0x00000000
$tl 9 Ox6f57206f
$t2 10 0x10040004
$t3 11 0x00000000
$t4 12 0x00000000
$t5 13 0x00000000
$t6 14 0x00000000
$t7 15 0x00000000
Rd $s0 16 0x71f5b2073

CSUN

CALIFORNIA

@% DR JEFF
lgl SOFTWARE

Instruction Formats R & |

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016-2023
COMP122 Hennessy & Patterson —
:szr?m" 2.5.6: MIPS R-type and I-type instruction encoding (COD Figure 2.5).

2x speed

Instruction formats

R4

rd shamt = funct (R-type)
Instruction Format op rs rt
Constant or address (I-type)
add R reg reg reg 0 32
sub (subtract) R reg reg reg 0 34
add immediate I reg reg constant
1w (load word) I 35 reg reg address
sw (store word) I 43 reg reg address

Sample instructions

add $t0, $s2, $s3
sub $s1, $s2, $s3
addi $sl, $s2, 20
1w $t0, 1200($tl)
sw $t0, 1200($t1)

Ss2 Ss3 R4=5t0/Ssi
18 | 19 | 8 0 32
18 | 19 | 17 0 34
18 Ss2 17 Ss1 20

35 9 ' g8 1200

43 g St Sto 1200

1

1

CSUN B sorrware
Address Formats & e

2016-2023
COMP122

Hennessy & Patterson —

___ Format | Addosscomputation

(register) (Sat) | contents of register
| imm +4 . immediate
| imm (register) +4 (Sat) . immediate + contents of register
| label ' address of label
| label £ imm Label +4 ‘ address of label + or - immediate 4
T“l;t;ég';ﬁ;(iregister) ‘ addres;of label + & - (imm&igie + contents of register)

Label +4 (Sat)
“EA” (effective address)

% 1 component
= Register (R) Size of Immediate matters!
= Immediate (I)
= Label (L)
% 2 components
= R+
= L+
** 3 components
= R+L+|

CSUN : B4 sorrware
S Simp le ALU Code & i orobmr

2016-2023
COMP122

Hennessy & Patterson —

Table 1.5.7: Sample processor instructions.
#lmmediate data

Add X, #num, Y Adds data in memory location X to the number num, storing result in location Y
Sub X, #num, Y Subtracts num from data in location X, storing result in location Y
Mul X, #num, Y Multiplies data in location X by num, storing result in location Y

Div X, #num, Y Divides data in location X by num, storing result in location Y

Jmp Z Tells the processor that the next instruction to execute is in memory location Z

“Go To”

CSUN : B8 soFrware
e Simp le ALU Code & i orobmr

2016-2023
COMP122

Hennessy & Patterson —

PARTICIPATION |

ACTIVITY 1.5.4: Processor executing instructions.

m 2x speed

Memory Locations

#immediate data 0 _ 96 2
1| Div 98, #5, 98 97 20
2 | Add 98, #32, 99 08 180
; o &8
4
Processor
20" 9--> 180
Next:0

CSUN : B8 soFrware
e Simp le ALU Code & i orobmr

2016-2023
COMP122 Hennessy & Patterson —
PARTICIPATION | , . .
Fe 1.5.3: Memory stores instructions and data as Os and 1s.
s 1 2 il loiais .
—— Machine code ST SORE
Location Memory Meaning Location Memory
0 {011 1100001 001001 1100010 |Mul 97, #9, 98 0 |Mul 97, #9, 98
100 1100010 000101 1100010 |Div 98, #5, 98 1 |Div 98, #5, 98
2 {001 1100010 100000 1100011 |Add 98, #32, 99 2 |Add 98, #32, 99
3 | 101j00000000000000000000f (Jmp O 31Jmp 0
4 |?? 4 |??
96 | ?? 96 |77
97 | 00000000000000000010100 |20 97 |20
98 |22 98 |72
99 |?? 99 |77

CSUN D) sorrware
pmCuronnia M| PS Assem b |y SRET

2016-2023
COMP122

Hennessy & Patterson —

parTiciPATIoON | 2.5.1: Example of translating a MIPS assembly instruction into a machine
ACTIVITY instruction.

m 2x speed

add $t0 $s1 $s2

add $s1 $s2 St0 INUSEC add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

MIPS Assembly

DR JEFF
9 SOFTWARE

© Jeff Drobman
2016-2023

Instruction formats

rd shamt funct
Instruction Format op rs rt
Constant or address
add R reg reg reg 0 32
sub (subtract) R reg reg reg 0 34
add immediate I reg reg constant
1w (load word) I 35 reg reg address
sw (store word) I 43 reg reg address
Sample instructions
add $t0, $s2, $s3 18 19 8 0 32
sub $s1, $s2, $s3 18 19 17 0 34
addi $sl1, $s2, 20 18 17 20
lw $t0, 1200($tl) 35 1200
sw $t0, 1200($tl) 43 1200

(R-type)

(I-type)

Register locations

$t0 8
$it -
$s1

$s2 8
$s3 Bl

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS Assembly

&% DR JEFF
E SOFTWARE

© Jeff Drobman
2016-2023

Hennessy & Patterson —

MIPS machine language
add R 0 18 19 17 0 32 add $s51,3s2,%s3
sub R 0 18 19 17 0 34 sub $s1,%s52,%s3
addi I 8 18 17 100 addi $s1,$s52,100
Iw | 35 18 17 100 iw $s1,100(8s2)
SW | 43 18 17 100 sw $s51,100(%$s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format R op rs rt rd shamt \ funct Arithmetic instruction format
I-format l op rs r address \ Data transfer format
\
offset
add $t0 $s1 $s2
add $s1 $s2 $t0 unused add
0 17 18 8 0 32
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS Assembly

Hennessy & Patterson

R move move R
subtract sub R multiply mult R
add immediate addi | multiply immediate multi |
load word 1w | load immediate 11 |
store word Sw | branch less than blt |
load half Th I branch less than)
load half unsigned 1hu [or equal ble '
store half sh | branch greater than bgt |
load byte b | branch greater than
load byte unsigned 1bu || orequal bge '
store byte sb | ‘
load linked 11 |
store conditional SC |
load upper immediate Tui |
and and R
or or R
nor nor R
and immediate andi |
or immediate ori |
shift left logical sl R
shift right logical srl R
branch on equal beq |
branch on not equal bne |
set less than slt R
set less than immediate slti |
set less than immediate sltiu |
unsigned
jump] J
jump register jr R
Jump and link jal J

&% DR JEFF
E SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Mult?
la

CSUN . . .) sorrware
-
Multi o |y & Divide Oetf Drohman

2016-2023

COMP122
MULTIPLY
¢ Unsigned only
¢ First convert negative numbers (2sC) — NEG op
s Compute result sign: 0 if both signs same, 1 else (not=)
s Complement result if sign is negative — NEG op
s Other MPUs use signed multiply (2sC) via “Booth’s Algorithm”
DIVIDE

** No hardware, no instruction
¢ Create subroutine (may find ones in asm library)
s Compute
= Long division
= Non-restoring division
= |terative subtraction (very slow)
% Use tricks
= Divide by 2 or any 2": right SHIFT by n
= Divide by 10: convert to BCD, then right SHIFT by 4 (reconvert to binary)
= Divide by 5: divide by 10, then multiply by 2 (by shifting after conv. Bin)

CSUN : : B sorrware
Shift/Rotate & Bit
COMP122
% SHIFT BIT
0 SHIFT 2 SET
= Arithmetic d CLR
= |Logical d TEST
J ROTATE

= Carry Bit (with, w/0)

Figure 2.6.1: C and Java logical operators and
their corresponding MIPS instructions (COD
Figure 2.8).

MIPS implements NOT using a NOR with one operand being zero.

Shift left
Shift right - >>) Sr
Bit-by-bit AND % 1

t

Bit-by-bit OR - | ' or. t

Logca porations wiPS insruction
o« [« | T

| BitbybitNoT | ' ' nor

CSUN : B8 sorrware
Addressing Modes
COMP122

MIPS addressing mode summary

Hennessy & Patterson —

Multiple forms of addressing are generically called addressing modes. The figure below shows how operands are identified for each
addressing mode. The MIPS addressing modes are the following:

1. Immediate addressing: The operand is a constant within the instruction itself

2. Register addressing: The operand is a register

3. Base addressing / displacement addressing: The operand is at the memory location whose address is the sum of a register and a
constant in the instruction

4. PC-relative addressing: The branch address is the sum of the PC and a constant in the instruction

5. Pseudodirect addressing: The jump address is the 26 bits of the instruction concatenated with the upper bits of the PC

1. Immediate addressing

|op | rsl rt | Immediate |

2. Register addressing
|op I rs | rt I rd I Ifunct| Registers
L | Register

3. Base addressing

Iop | rs | rt [Address | Memory

| Register |®—~
4, PC-relative addressing

[op|rs|rt| Adaress | Memory

| PC | Word

5. Pseudodirect addressing

| op | Address | Memory
[

[PC | @— Word

| I

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Addressing Modes

1. Immediate addressing

op

rs

rt Immediate

2. Register addressing

Hennessy & Patterson —

op|rs|rt|rd]...|funct Registers
L Register
3. Base addressing
op|rs | rt Address Memory
Register Word
| }
4. PC-relative addressing
op|rs |t Address Memory
PC Word
L
5. Pseudodirect addressing
op Address Memory
[
PC Word

|

ﬁ%

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN B sorrware
sTATE Ny Loa d Pseu d o0 PS ©ef Drobman

COMP122

The MIPS assembler (and SPIM) synthesizes the more complex addressing modes by producing one or more instructions before
the load or store to compute a complex address. For example, suppose that the label table referred to memory location
0x10000004 and a program contained the instruction

ld Sa0, table + 4(%al)

The assemblir would translate this instruction into the instructions

lui Sat, 4096
addu Sat, Sat, Sal
lw Sa0, 8(Sat)

The first instruction loads the upper bits of the label's address into register Sat, which is the register that the assembler reserves
for its own use. The second instruction adds the contents of register Sal to the label's partial address. Finally, the load instruction
uses the hardware address mode to add the sum of the lower bits of the label's address and the offset from the original instruction
to the value in register $at.

la = load address (32-bit)

&R sorrware
pChuromn | o) b 1B: LO 3 d Ad d r e

2016-2023
COMP122

.eqv heapHi, 0x1004 .eqv heap, 0x10040000

<
lui $t3, heapHi ©
‘ ' ' la $13, heap

CSUN : .y (B soFrware
Immediates (16/32-bit) & e

2016-2023
COMP122

1. Immediate addressing
op| rs | rt Immediate

32-bit immediate operands
parTicipaTioN | 2.10.7: The lui instruction, and how to load a 32-bit constant (COD Figure 2.17 D

UL (The effect of the lui instruction)).
m D 2x speed
lui $t0, 255 # $t0 is register 8 IL”
001111 | 00000 | 01000 0000 0000 1111 1111
lui instruction:
$t0 | 0000 0000 1111 1111 0000 0000 0000 0000
How load following 32-bit constant into $s07?
. 0000 0000 0011 1101 0000 1001 0000 0000
H 'gh HW (61 in decimal) (2304 in decimal)
lui |$Ss0,] 61

$s0 | 000000000011 1101 0000 0000 0000 0000

ori |$s0, S$s0,) 2304
Low HW $s0 | 0000 0000 0011 1101 0000 1001 0000 0000

CSUN : B2 sorrware
o Load: lui vs. Sgp

Because the data segment begins far above the program at address 10000000y, load and store instructions cannot directly
reference data objects with their 16-bit offset fields (see COD Section 2.5 (Representing Instructions in the Computer)). For
example, to load the word in the data segment at address 10010020y into register $v0 requires two instructions:

lui $s0, 0x1001 # 0x1001 means 1001 base 16 z e Stack segment
lw $v0, 0x0020($s0) # 0x10010000 + 0x0020 = 0x10010020

Dynamic data Dt :
——————————— ata segmen

Static data g

10000000,
Text segment
400000, |7 7

To avoid repeating the lui instruction at every load and store, MIPS systems typically dedicate a register ($gp) as a global
pointer to the static data segment. This register contains address 10008000y, S0 load and store instructions can use their
signed 16-bit offset fields to access the first 64 KB of the static data segment. With this global pointer, we can rewrite the
example as a single instruction:

lw $v0, 0x8020)Sgp)

Of course, a global pointer register makes addressing locations 100000004, = 1001000044 faster than other heap locations.
The MIPS compiler usually stores global variables in this area, because these variables have fixed locations and fit better than

other global data, such as arrays.

sTATE U Loa d Imme d late ©ef Drobman
COMP122 i v, Ia

28 #short/long 1mmediates

29 11 $t1, 256 #short I

30 i $t2, =2 #short neg

31 Lli $t3, 0x12345678 #long I

32 la $t4, 0x12345678 #same?

33 add $t5,%$t1,$t2 #R format

34 addi $t5,%$t2, 3300 #I format--too large?

Code Basic Source

0xad6c0008 sw $12,0x00000008($11) 27: sw $td4, 8(%t3)
0x24090100 addiu $9,$0,0x00000100 29: 1i $t1, 256 #short I
0x240afffelhddiu $10,%$0,0xffff... 30: 1i $t2, -2 #short ne
1/$1,0x00 31: 11 $t3, 0x12345678 #long I
0x342b5678 0ori)$11,%1,0x000
$1,0x000q1234 | 32: la $t4, 0x12345678 f¥same?
0x342c5674 ori| $12,$1,0x000¢5678 |
0x01226820 add $13,$9,510 33: add $t5,5%t1,$t2 #R format

0x214d0ced addi $13,$10,0x0000... 34: addi $t5,%$t2, 3300 #I format--too large?

DR JEFF

CSUN Q SOFTWARE
o |l oads (ea) Son
0169095
COMP122 MIARS
lui $1,0x00001001 12: lw $t1, hello
lw $9,0x00000000(%$1)
Address Code Basic Source
0x00400000 0x24090004 addiu $9,$0,0x00000004 10} i stl, 4 #next word
0x00400004 0x3c011001lui $1,0x00001001 11} la pt2, data #data
0x00400008 ax342aooo;|g|:1 $10,$1, 0x00000000
0x0040000c 0x3c011004{lui $1,0x00001004 12} 1i §t3, 0x10041111 #heap
0x00400010 OxMZblllﬂori ;11:;1:oxoooo1111,
0x00400014 0x8d510000 lw $17,0x00000000($10) 14: 1w $s1, aaaa
0x00400018 0x8d52000c \w $18,0x0000000C(510) 15: lw $s2,|12($t2) #dddd
0x0040001c 0x3c011001lui $1,0x00001001 16: 1w $s3,%ata #bbbb
0x00400020 6x8c33600:|m $19, 0x00000004($1)
0x00400024 0x3c011001lul $1,0x00001001 17: lw $s4,| data+4($tl)|#cccc
0x00400028 0x00290821addu $1,$1,$9
0x0040002c 0x8c340004|\w $20,0x00000004($1)

CSUN B soFrware
T EA (Eff Add r) Formats O eff Brobman

2016-2023
COMP122 MARS

m MARS License Bugs/Comments Acknowledgements Instruction Set Song

100 unsigned 16-bit integer (0 to 65535)
100000 signed 32-bit integer (-2147483648 to 2147483647)

Load & Store addressing mode, basic instructions
-100(st2) sign-extended 16-bit integer added to contents of $t2

Load & Store addressing modes, pseudo instructions

(st2) contents of $t2

-100 signed 16-bit integer

100 unsigned 16-bit integer

100000 signed 32-bit integer

100(s$t2) zero-extended unsigned 16-bit integer added to contents of $t2
100000(5t2) signed 32-bit integer added to contents of $t2

label 32-bit address of label

label(s$t2) 32-bit address of label added to contents of $t2

label+100000 32-bit integer added to label's address

label+100000(5t2) sum of 32-bit integer, label's address, and contents of $t2

W Extended (pseudo) Instructions Directives Syscalls Exceptions M

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

¥m DR JEFF
25| soFTwaRE

Load Formats S

2016-2023

COMP122

B N T

MARS

i $t1,-100 Load Immediate : Set $t1 to 16-bit immediate (sign-extended)
" 11 $t1,100 Load Immediate : Set $t1 to unsigned 16-bit immediate (zero-extended)
1i $t1,100000 Load Immediate : Set $t1 to 32-bit immediate

w $t1,-100($t2)

w $t1, ($t2)

lw $t1,-100

lw $t1,100

lw $t1,100000

w $t1,100($t2)

w $t1,100000($t2)
lw $t1, label

w $t1, label($t2)
lw $t1, label+100000
w $t1, label+100000($t2)

Load word
Load Word
Load Word
Load Word
Load Word
Load Word
Load Word
Load Word
Load Word
Load Word
Load Word

: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of memory word at label's address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address
: Set $t1 to contents of effective memory word address

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

sw $t1,-100($t2)

Store Formats

¥m DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

sw $t1, ($t2)

sw $t1,-100

sw $t1,100

sw $t1,100000
sw $t1,100(%$t2)

sw $t1,100000($t2)

sw $t1, label

sw $t1, label($t2)
sw $t1, label+100000
sw $t1, label+100000($t2)

Store word
Store Word
Store Word
Store Word
Store Word
Store Word
Store Word
Store Word
Store Word
Store Word
Store Word

MARS

: Store contents of $tl into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into memory word at label's address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address
: Store $t1 contents into effective memory word address

CSUN @A) sorrware
o Contro | o

NORTHRIDGE 2016-2023
COMP122

** Control Structures

O IF-THEN-ELSE Assembly level uses
O LOOPS » Conditional Branches (B)

1 Subroutines/Functions =2 Methods

Assembly level uses
» Jump and Link (JAL)

** Modern CPU’s use
» “branch prediction” for
» “speculative execution”

CSUN LSt SSF'I:;ZEE

[] []
Conditionals & ifforshmn

NORTHRIDGE 2016-2023
COMP122

High level
IF-THEN-ELSE Use conditions: logical expressions (T/F)

**» Assembly uses conditionals too

1 All use conditional Branches (B<cond>)
 Flags must be set first (T/F): N, Z for {< = >}
= Use any ALU op, or “Compare” (cmp)
= ARM must use “Compare” (cmp)
J ARM (only) supports conditionals for ALL ops
= Add<cond> > Add gtz

CSUN A |%|5815TJ\EZ;E
Conditionals ST

2016-2023
COMP122 BNF

<conditional> ::= <logic exp>
<logic exp> ::= [<Bool>] <logic op> <Bool> | <logic exp>

<logic op> ::= {AND, OR, NOT, XOR, NAND, NOR, XNOR}
<Bool> ::= {true, false} | <relational exp>

<relational exp> ::= <arith val> <rel op> <arith val> | <rel exp>
<rel op>::={<, =, 1=, >, <=, >=}

<rel op> ::={lt, eq, ne, gt, gte, lte} | <pseudo rel_7>
<pseudo rel Z> ::={ltz,ez, nz, gtz, gtez, |tez}
Z = Uses S0 as 2" operand

CSUN @) soroware
Jump / Branch S

2016-2023
COMP122

Program Control

< JUMP » Long address (absolute pointer)

= JUMP/GOTO U Used for Swap/task switching
+* BRANCH .

= BRA » PC relative (offset)

= BRCC 1 Used for Loops

= LOOP
s CALL > Absolute/relative address

= CALL/CALR

1 Used for Subroutines
= RET/RETFIE

O PC €>5sP
1 Used for Delays
s* NOP

+** Absolute vs. Relative (PC)
+¢* Conditional vs. Un-conditional

CSUN) sorrwars
. C ontro | C P O e

2016-2023
COMP122 7.7 Exceptions and interrupts — Hennessy & Patterson —

Figure 7.7.1: Coprocessor 0 registers.

| = CR—
name number

BadVAddr 8 memory address at which an offending memory reference occurred
Count ‘ 9 timer
Compare . 11 ' value compared against timer that causes interrupt when they match
Status 12 . interrupt mask and enable bits
13 exception type and pending interrupt bits

EPC 14 ~address of instruction that caused exception
Config configuration of machine
Figure 7.7\2: The status register (COD Figure
Interrupt handler. A piece of code that is run as a result of an exception or an interrupt.
Exception handler -§ B
-.a%_ g8
PSW 385828
15 8 4 10
fclviv/z 0
Interrupt |E
Flags ke

Interrupts(8) User/system

CSUN] B sorrware
Exceptions (EPC)

COMP122

Hennessy & Patterson —

Figure 7.7.3: The cause register (COD Figure
T2

31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 7.7.4: Causes of exceptions.

0 Int | ' Interrupt (hardware)

4 AdEL ' address error exception (load or instruction fetch)
5 | AJES | address error exception (store)
6 IBE | bus error on instruction fetch

7 DBE | bus error on data load or store

8 Sys | ' syscall exception

9 Bp breakpoint exception

10 RI reserved instruction exception

11 ‘ CpU . coprocessor unimplemented

12 | Ov ‘ arithmetic overflow exception

3 |[[] we

i] SYS JSONSRS pORR.

- JEFF
CSUN =0 SOFTWARE
mChuronNe | S A e

NORTHRIDGE 2016-2023
COMP122

s*v5 (32-bit, ARMsim)

) <»v7 (32-bit)

s*v8 (64-bit)
» Superset of 32-bit ISA
» Adds 64-bit ops (“Double”)
» Simplifies ISA (more like MIPS)

» See separate slide set “ARM”

CSUN Bl sorrware
Aoy ISA: MIPS vs ARM Jueesenaiionm

2016-2023
COMP122

Instruction set: The vocabulary of commands understood by a given architecture.

. ARMV7 is similar to MIPS. More than 9 billion chips with ARM processors were manufactured in 2011, making it the most popular
instruction set in the world.

2. The second example is the Intel x86, which powers both the PC and the cloud of the PostPC Era.

3. The third example is ARMV8, which extends the address size of the ARMv7 from 32 bits to 64 bits. Ironically, as we shall see, this

2013 instruction set is closer to MIPS than it is to ARMV7.

< MIPS32 |

@ ARMy7 Pt

< MIPS64 |
64-bit

** ARMvS8

CSUN = sg_lETJv%Z;E
AT ISA: MIPS vs ARM O et Brobrman

2016-2023
COMP122

MIPS ARM

+* CONDITIONALS Branches only ANY op

+* LOAD/STORE
> Extras LUI, LWL/R LDM/STM
» Memory Refs (EA)

< SYSTEM Break BKPT
Syscall DBG
HLT
Syscall?
+* MISC Extras “Q” (ALU ops)

PUSH/POP

DR JEFF

CSUN 25 soFTwARE
CALIFORNIA [] INDIEAPPDEVELOPER
LO d d S. MIP S VS ARM © e brobmn

COMP122

MIPS

MIPS = |w
lw, Ih, |b are primitives = i

*,
.0

L)

\/
’0

*,

o
=
&
[+ V]
©
-
3,
.
<
m
o
[+}]
Q.
=
©
©
m
“-
-
[+)]
=
O
-
—
1]
o,
4§
m
—
n
Qo

"li" and "la" are pseudo-ops
Iwl, lwr are primitives

\/
.0

L)

\J
.0

*,

ARM = |dr
ARM = Ldr#
most ARM Loads are primitives = |dr=
"B/H" width modifiers too: Idrb, Idrh
ARM has an additional "Load Multiple" and "swap" as primitives
ARM v7 ISA:
Idr [condition](b, h, w)[s]
str [condition](b, h, w)[s]
Idm [load multiple]
swp (b, h, w) [swap]

*
0.0

e

*%

e

*

e

*%

\/
0.0

*
.0

L)

e

*%

e

*

e

*%

CSUN == sggTJv%Z;E
TAT[;LLI:\H:'{SI[IAIT\ A R IVI Asse m b Iy @JeffDrobman

2016-2023
COMP122

ARM Ref
Branch/jump:
B{cond} BNE, BEQ (also B uncond.)
BL{cond} Branch & Link
<no J>
returns:
ERET
conditionals:
IT (if-then)
debug:
BKPT

DBG (debug)
HLT (halt)

CSUN : B sorrware
ChTomy ARM Re gi sters L ot

2016-2023
COMP122 ARMVYT —
Table A1-2 Predeclared core registers in AArch32 state
MIPS Register names |Meaning
$t0-9, $s0-7 | r@-ri5 and RO-R15 | General purpose registers.
$a0-3 |al-a4 Argument, result or scratch registers. These are synonyms for R0 to R3.
Sv0-1 | v1l-v8 Variable registers. These are synonyms for R4 to R11.
$gp SB Static base register. This is a synonym for R9.
IP Intra-procedure call scratch register. This is a synonym for R12.
Ssp SP Stack pointer. This is a synonym for R13.
Sra LR Link register. This is a synonym for R14.
N/A | PC Program counter. This is a synonym for R15.

With the exception of a1-a4 and v1-v8, you can write the register names either in all upper case or all
lower case.

CSUN B sorrwane
e ARM Reglsters — ARIVIS|m o o

2016 2023
COMP122 ARMVS —

&9 DR JEFF
CSUN - B sorrwane
ARM Re gisters & it srobman

2016-2023
COMP122

Hennessy & Patterson ARMvV8

Preserved
numbor on call?

X0-X7 Arguments/Results no
X8 8 Indirect result location register no
X9-X15 9-15 Temporaries no

16 May be used by linker as a sctatch. register,; s
X16 (IPO) other times used as temporary register

17 May be used by linker as a scratch register; s
X17 (IP1) other times used as temporary register

18 Platform regi§ter for platform indgpendent e
X18 code; otherwise a temporary register
X19-X27 19-27 Saved $s0-7 yes
X28 (SP) 28 Stack Pointer Ssp yes
X29 (FP) 29 Frame Pointer Sfp yes
X30 (LR) 30 Link Register (return address) Sra yes
XZR 31 The constant value 0 Szero n.a.

CSUN B sorrware
e ARM: Status & Control — exsen
COMP122 CPSR — PSW ARMv7 —

The Current Program Status Register (CPSR) has the following 32 bits.

« M (bits 0—4) is the processor mode bits.

e T (bit 5) is the Thumb state bit.

F (bit 6) is the FIQ disable bit.

| (bit 7) is the IRQ disable bit.

A (bit 8) is the imprecise data abort disable bit.

E (bit 9) is the data endianness bit.

IT (bits 10-15 and 25-26) is the if-then state bits.
GE (bits 16—19) is the greater-than-or-equal-to bits.
DNM (bits 20-23) is the do not modify bits.

« J (bit 24) is the Java state bit.

JE (bit 27) is the sticky overflow bit.

bit 28) is the overflow bit.

(bit 29) is the carry/borrow/extend bit.

Z (bit 30) is the zero bit.

ﬂ[bit 31) is the negative/less than bit.

-
<

Flags

.
O

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

compP122 ARM v7 ISA

ARM Assembly

¥m DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Load/store:

LDR (b, h, w)

STR (b, h, w)

LDM{IA} [load multiple]
STM [store multiple]
SWP ((b, w) [swap]

ARM Ref

PUSH/POP
. B

ARM Instruction Set H S

Quick Reference Card | |

Single data item loads and stores | § |Assembler |

Load Immediate offset <op>{size}{T) R4, [Rn {, #<offset>}](!)

or ::’O':y‘ Post-indexed, immediate <op>{size}{T) R4, [Rn), #<offset>

woraq, e o . : a0

i Ratharara Regna.ler offset . <op>{size} R4, [Rn, +/-Rm {, <opsh>}](!}
Post-indexed, register <op>{(size}{(T} R4, (Rn), +/-Rm {, <opsh>}
PC-relative <op>{size} Rd, <label>

Load multiple |Block data load
return (and exchange)
and restore CPSR
User mode reeisters

LDM(IA|IB|DA|DB)} Rn(!}, <reglist-PC>
LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC>
LDM(IA|IB|DA|DB} Rn{!}, <reglist+PC>"
LDM{IA|IBIDAIDB} Rn. <realist-PC>"

| Push |

IPUSH <reglist>

Pop

POP <reglist>

CSUN

@ DR JEFF
E SOFTWARE

o
INDIE APPDEVELOPER
e ARM Quick Ref & i brobman
NORTHRIDGE 2016-2023
COMP122
ARM Instruction Set
Quick Reference Card
ARM architecture versions Condition Field
n ARM architecture version n and above Mnemonic Description Description (VFP)
nT, n) T or J variants of ARM architecture version n and above EQ Equal Equal
SE ARM v5E, and 6 and above NE Not equal Not equal, or unordered
T2 All Thumb-2 versions of ARM v6 and above CS / HS |Carry Set/Unsigned higher or same | Greater than or equal, or unordered
6K ARMv6K and above for ARM instructions, ARMv7 for Thumb c¢ / LO | Carry Clear / Unsigned lower Less than
Z All Security extension versions of ARMv6 and above MI Negative Less than
RM ARMv7-R and ARMv7-M only PL Positive or zero Greater than or equal, or unordered
XS XScale coprocessor instruction Vs Overflow Unordered (at least one NaN operand)
ve No overflow Not unordered
Flexible Operand 2 HI Unsigned higher Greater than, or unordered
Immediate value #<immBm> LS Unsigned lower or same Less than or equal
Register, optionally shifted by constant (see below) Rm (, <opsh>} GE Signed greater than or equal Greater than or equal
Register, logical shift left by register Rm, LSL Rs LT Signed less than Less than, or unordered
Register, logical shift nght by register Rm, LSR Rs GT Signed greater than Greater than
Register, arithmetic shift right by register Rm, ASR Rs LE Signed less than or equal Less than or equal, or unordered
Register, rotate right by register Rm, ROR Rs AL Always (normally omitted) Always (normally omitted)

Register, optionally shifted by constant

All ARM instructions (except those with Note C or Note U) can have any one of these condition codes after the

instruction mnemonic (that 1s, before the first space in the instruction as shown on this card). This condition s

encoded in the instruction.

(No shift) Rm Same as Rm, LSL #0 All Thumb-2 instructions (except those with Note U) can have any one of these condition codes after the
Logical it |Rm, 151 $<shizes Alowedsifs 031 e e e e e
Logical shift right Rm, LSR #<shift> Allowed shifts 1-32 instruction.
Arithmetic shift right Rm, ASR H<shift> Allowed shifts 1-32 On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label>.
Rotate right Rm, ROR #<shift> Allowed shifts 1-31
Rotate right with extend | Rm, RRX Processor Modes Prefixes for Parallel Instructions
16 User s Signed arithmetic modulo 2% or 2'9_ sets CPSR GE bits
PSR fields (use at least one suffix) 17 FIQ Fast Interrupt Q Signed saturating arithmetic
Suffix Meaning 18 IRQ Interrupt SH | Signed arithmetic, halving results

c Control field mask byte PSR(7:0] 19 Supervisor U | Unsigned arithmetic modulo 2 or 2%, sets CPSR GE bits

£ Flags ficld mask byte PSR([31:24] 23 Abort UQ | Unsigned saturating arithmetic

E} Status ficld mask byte PSR[23:16] 27 Undefined UH | Unsigned arithmetic, halving results

> 3 Extension field mask byte PSR[15:8) 31 System

CSUN &) sorware
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 Load/Store ARM Book ——
Table 3.4
ARM addressing modes
Syntax Name
[Rn, #+<offset 12>] Immediate offset

[Rn, *Rm, <shift_op> #<shift>] | Scaled register offset

[Rn, #t<offset 12>]! Immediate pre-indexed

[Rn, *Rm, <shift_op> #<shift>]! | Scaled register pre-indexed

[Rn], #+<offset 12> Immediate post-indexed

[Rn], *Rm, <shift_op> #<shift> | Scaled register post-indexed

CSUN &) sorware
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 Load/Store ARM Book ——

Register immediate: [Rn]
When using immediate offset mode with an offset of zero, the comma and offset can be omit-
ted. That is, [Rn] is just shorthand notation for [Rn, #9]. This shorthand is referred to as reg-

ister immediate mode. For example, the following line of code:

ldr r3, [r2]

Idr

Immediate offset: [Rn, #+< offset_12 >]
The immediate offset (which may be positive or negative) is added to the contents of Rn. The
result is used as the address of the item to be loaded or stored. For example, the following

line of code:

dr ro, [rl, #12]

CSUN Bl sorrware
pChuromn ARM Ref Manua | e

2016-2023
COMP122

Using this book
This book is organized into the following chapters:

Part A Instruction Set Overview

Chapter A1 Overview of AArch32 state
Gives an overview of the AArch32 state.

Part B Advanced SIMD and Floating-point Programming

Chapter B1 Advanced SIMD Programming
Describes Advanced SIMD assembly language programming.

Chapter B2 Floating-point Programming
Describes floating-point assembly language programming.

Part C A32/T32 Instruction Set Reference

Chapter C1 Condition Codes
Describes condition codes and conditional execution of A32 and T32 code.

Chapter C2 A32 and T32 Instructions
Describes the A32 and T32 instructions supported in AArch32 state.

Chapter C3 Advanced SIMD Instructions (32-bit)
Describes Advanced SIMD assembly language instructions.

Chapter C4 Floating-point Instructions (32-bit)
Describes floating-point assembly language instructions.

Chapter C5 A32/T32 Cryptographic Algorithms
Lists the cryptographic algorithms that A32 and T32 SIMD instructions support.

CSUN D) sorrware
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 LDR ARM Ref

LDR (immediate offset)
Load with immediate offset, pre-mndexed immediate offset, or post-indexed immedsate oflsel
Syntax
LOR{ type}{cond) Rt, [Rn {, Roffset}] ; immediate offset
LOR{ type}{cond} Rt, [Rn, #offset]! ; pre-indexed
LDR{ type}{cond) Rt, [Rn), #offset ; post-indexed
LORD{cond} Rt, Rt2, [An {, #offset}] ; immediate offset, doubleword
LDRD{cond} Rt, RtZ, [Rn, Roffset]! ; pre-indexed, doubleword
LORD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:
¢ cond
ype 15 an optional conditson code.
can be any one of: kt
15 the regaster to load.
B Rn
unsigned Byte (Zero extend to 32 bits on loads.) is the register on which the memory address 1s based.
s8 Rw
sagned Byte (LDR only. Sign extend to 32 bits.) 1$ & regaster containing a value to be used as the offset. -fw 15 not permatted in T32 code.
H shift
unsigned Halfword (Zero extend to 32 bits on loads.) s N optional vt

SH is the additional register to load for doubleword operations.

signed Halfword (LOR only. Sign extend to 32 bits.)
Not all options are available in every mstruction set and architecture.

omitted, for Word. Offset register and shift options
The following table shows the ranges of offsets and availability of these instructions:

- ol

CSUN B sorrware
ARM Assembly
COMP122 LDR ARM Ref ———

LDR (register offset)
Load with register oflset, pre-indexed register oflsel, or post-indexed regaster offset.

Syntax
LDR{ type}{cond) Rt, [Rn, +Rm» {, shift)] ; register offset

LOR{ type}{cond} Rt, [Rn, tRo {, shift}]! ; pre-indexed ; A32 only

LOR{ type}{cond) Rt, [Rn), =Rm {, shift} ; post-indexed ; A32 only
LORD{cond} Rt, Rt2, [Rn, tRo] ; register offset, doubleword ; A32 only
LDRD{cond} Rt, Rt2Z, [Rn, #Rw]! ; pre-indexed, doubleword ; A32 only
LORD{cond} Rt, Rt2, [An], 2RAw ; post-indexed, doubleword ; A32 only

where:
t cond
ype 15 an optional conditson code.
can be any one of: Rt
15 the regaster to load.
8 Rn
unsigned Byte (Zero extend to 32 bats on loads.) i the regaster on which the memory address 1s based.
s8 Rw
signed Byte (LOR only. Sign extend to 32 bits.) 18 a regaster contaiming a value to be used as the offset. -fw 15 not permatted in T32 code.
shift

H | . |
onal shifl.
unsigned Halfword (Zero extend to 32 bits on loads. g, W cptonaly

SH 1s the additional register to load for doubleword operations.

signed Halfword (LOR only. Sign extend to 32 bits.) Not all options are available in every mstruction set and architecture.

omitted, for Word. Offset register and shift options
The following table shows the ranges of offsets and availability of these instructions:

— FF
CSUN &) sorrware
sTATE NSy ARM Assem b Iy ©ef Drobman
COMP122 Load Immediate (li) —— ARM Book ——

3.6.1 LOAD IMMEDIATE | 3.6 Pseudo-Instructions

This pseudo-instruction loads a register with any 32-bit value:

1dr Load Immediate

When this pseudo-instruction is encountered, the assembler first determines whether or not
it can substitute a mov Rd,#<immediate> Or mvn Rd,#<immediate> instruction. If that is not pos-
sible, then it reserves four bytes in a “literal pool” and stores the immediate value there.
Then, the pseudo-instruction is translated into an dr instruction using Immediate Offset ad-

dressing mode with the pc as the base register.

Syntax

ldr{<cond>} Rd, =<immediate>

* The optional <cond> can be any of the codes from Table 3.2 specifying conditional

execution.

* The <immediate> parameter is any valid 32-bit quantity.

CSUN &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaTE UV R ARM AS séem b Iy ©ef Drobman

COMP122 MOV ARM Ref ———

c2.58 MOV
Move.
Syntax
MOV{S}{cond)} Rd, Operand2
MOV{cond} Rd, #iewl6

where:
s
15 an optional suflix. If S s specified, the condstion flags are updated on the result of the
operation.
cond
15 an optional condition code.
Rd
15 the destination register.
Operaond2
15 a flexible second operand.
innlé
1s any value in the range 0-65535.
Operation

The MOV instruction copies the value of Operand?2 into Rd.

In certain circumstances, the assembler can substitute MYN Tor MOV, or MOV for MUN. Be aware of this when
reading disassembly histings.

CSUN &) sorware
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 Syscall ARM Ref

C2145 SVC
Operation
o , .
SpteVisar Len. The SVC mstruction causes an exceplion. This means that the processor mode changes to Supervisor, the
Syntax CPSR 1s saved to the Supervisor mode SPSR, and execution branches to the SVC vector.
SVC{cand) #iew 1ew 15 1gnored by the processor. However, it can be retrieved by the exception handler to determine what
service 13 bemng requested.
where:
Note
cond SVC was called SWI in earlier verssons of the A32 assembly language. SWI mstructions disassemble to
is an optional condition code. SVC, with a comment to say that this was formerly SWI.
i
18 an expression evaluating to an integer in the range: c
2 ondition s
« 010 2%.1 (a 24-bit value) in an A32 mstruction. flag
* (255 (an 8-bit value) in a T32 instruction. This mstruction does not change the flags.
C2112 SMC
Secure Monstor Call. SWI 9 Svc
Syntax
SMC{cand} #iexd
where:
cond
15 an optional conditson code.
1ond

15 a 4-bit immediate value. This is ignored by the Arm processor, but can be used by the SMC
exception handler to determine what service is being requested.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

gan DR JEFF
« ., . lQISOFTWARE
ARM Conditionals o s

2016-2023
ARM Ref ——

C1.10

Condition code suffixes and related flags

Condition code suffixes define the conditions that must be met for the mstruction 1o execute.
The following table shows the condition codes that you can use and the flag settings they depend on:

Table C1-1 Condition code suffixes Table C1-2 Condition code suffixes and related flags
- Newning Suffix Flags Meaning
E E
i e £Q 2 set Equal

NE |Notegaal

NE Z clear Not equal
cs Carry set (sdentical 1o HS)
Hs Unsigned highes or (identical to CS) CS or HS | C set Higher or same {unsigned >~)
CC | Camy clear (identical to LO) CCorLO| C clear Lower (uasigned <)
L0 | Unsigned lower (identical s OC) MI N set Negative
MI Minus or negative result PL N clear Positive or zero
PL Positive or zero result Vs Voset Overflow
vs Overflow v V clear No overflow
VC | No overflow HI C set and Z clear Higher (unsigned >)
HI Unsigned hs

wxorl sa LS C clear or Z sl Lower or same (unsigned <<)

LS Unsigned lower of same

GE N and V the same Signed >=
GE Signed grester than or equal

T N V difrs <

LT | Signed bess than . nd V diffee Signed
o1 Signed grester than GT Z cleas, N and V the same | Sagned >
LE Signed less than oe equal LE Z set, N and V differ Signed <=
AL Always (this is the default) AL Any Always, Thes suffix s nocmally omitted.

CSUN . B sorrware
ARM Conditionals
COMP122 ARM Ref

The optional condition code 13 shown in syntax descnptions as {cond}. This condition 15 encoded in A32
instructions. For T32 instructions, the condition 1s encoded 1n a preceding IT instruchon. An mstruction
with a conditton code is only executed if the condition flags meet the specified condition.

The lollowing 1s an example of conditional execution 1n A32 code:

= re, r1, r2 3 re = rl o+ r2, don't update flags
ADOS ré, ri, r2 ; re@ = rl » r2, and update flags
ADOSCS| re, r2, r2 ; If C flag set then r@ = rl + r2, ADDSCS
3 and ppdate flags
- ré, rl ; update flams based on ré-rl.
In C the ged algorithm can be expressed as:
int ged(int a, int b)
whil I= b
scd (e (‘)
C™p ro, rl 1 @>b)
SUBGT e, ™, rl LR
SUBLE rl, rl, r@ ; b=b - a;
BNL g<d , return a;
The following examples show implementations of the ged algorithm wath and without conditional
SUBGT instructions.
S U BLE Example of conditional execution using branches in A32 code
This example 18 an A32 code implementation of the ged algorithm, It achieves conditional execution by
using conditzonal branches, rather than mdivadual conditional instructions:
cMP
ged re, rl
end
less
roa ™, rl ; could be SUB rd, re, r1 for A32
less .
S5UBS rl, r1, rd ; could be SUB r1, r1, ro for A2
H ged

end

The code 15 seven mstructions long because of the number of branches. Every time a branch is taken, the
processor must refill the pipeline and continue from the new location. The other mstructions and non-
executed branches use a single cycle each.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

C25

Operand2+shift

Syntax of Operand2 as a register with optional shift

ARM Ref

When you use an Operand2 regaster in an mstruction, you can optionally also specify a shift value.

Syntax
Re {, shift)

where:
L]
15 the register holding the data for the second operand.

shift

ASR #n

arithmetic shaft right n bits, 1 <n <32,
LSL #n

logscal shifl left n bits, 1 <n <31
LSR #n

logscal shifl right n bits, 1 <n <32,
ROR #n

rotate right n bitg, 1 <n <31,
RRX

rotate right one bit, with extend.
type Rs

register-controlled shift 15 available in Arm code oaly, where:

type

1% one of ASR, LSL, LSR, ROR.

Rs

15 an oplional constant or register-coatrolled shift to be applied to Re. It can be one of:

15 a regaster supplying the shift amount, and only the least significant byte 15

used.

il omitted, no shift occurs, equivalent to LSL #8.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

CSUN Q SSIBT{EZ;E
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 Q ARM Ref

ca.7 Saturating instructions
Some A32 and T32 instructions perform saturating anthmetic.

The saturating imstructions are:
« | QADD,
« | QUADD,
« | qosue.
. | gsus.
* | SSAT.
* | USAT.

+» Saturating ::= limit on overflow

Some of the parallel instructions are also saturating,

Saturating arithmetic
Saturation means that, for some value of 27 that depends on the instruction:

» For a signed saturating operation, if the full result would be less than -2, the result returned 15 .27
* For an unsigned saturating operation, if the full result would be negative, the result returned is zero.
* If the full result would be greater than 2"-1, the result returmned 1s 27-1.

When any of these occurs, it 1s called ssturation. Some mstructions set the Q flag when saturation occurs.
Note

Saturating mstructions do not clear the Q flag when saturatson does not oceur. To clear the Q flag, use an
MSR instruction.

CSUN
ARM Assembly

COMP122 Shift

Arithmetic shift right (ASR)

Arithmetic shift nght by n bits moves the lefl-hand 32.n buts of a register to the right by n places, mnto the
right-hand 32-n bits of the resull. [t copres the original bit[31] of the register into the left-hand n bits of

| FiT1 Eny
SHERER [§|4|3[2'| 1fo|
Figure C2-1 ASR 83
Logical shift right (LSR)

Logical shift right by n bits moves the left-hand 32-n bats of a regaster to the nght by n places, mto the
right-hand 32.a bits of the result. It sets the left-hand n buts of the result to 0.

804 Gamy
SHEREN [5]4]3]2]1]o]
Lo Lo

Figure C2.2 LSR #3

Logical shift left (LSL)

Logical shift left by n bits moves the right-hand 32-n bats of a regaster to the lefl by n places, mto the lefl-
hand 32-n bits of the result. It sets the nght-hand n bits of the result to 0.

Figure C2-3 LSL #3

ARM Ref ———

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

Rotate right (ROR)

Rotate nght by n bats moves the lefi-hand 32-n bits of a register to the right by n places, into the right-
hand 32-n bits of the result. It also moves the nght-hand n bits of the register into the lefi-hand n bits of
the result.

Carry

Flag
Bl 11] |5]4]3[2] 1]0) D
I=EE [t

Figure C2-4 ROR 23

Rotate right with extend (RRX)

Rotate nght with extend moves the bits of a register to the right by ane bit. It copees the carry flag into
bat|31] of the result.

When the mstruction is RRXS or when RRX 15 used in Operand2 with the instructions MOVS, MUNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag 1s updated to bit[0] of the register R,

Carry

I [Tk ET
coa LILER 2

Figure C2-5 RRX

B 1|
Uy

Rotate ARM Ref =

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122
A13

@@ DR JEFF
bl 84 soFTware
ARM Assembly @ e orooman

ARM Ref

Processor modes, and privileged and unprivileged software execution

The Arm architecture supports different levels of execution privilege. The prvilege level depends on the
processor mode.

Note

Armve-M, Armv7-M, Armv8-M Bascline, and Armv8-M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A1-1 AArch32 processor modes

Processor mode | Mode number
User (610000
FIQ Bl100o]
IRQ ®1ooLo
Supervisor blooll
Moamor ®Io110
Abort wioln
Hyp il
Undefined wion
System wIin

CSUN &) sorware
mCuroNs ARM Assem b |y SRET

2016-2023
COMP122 ARM Ref

Application

IeveIAview System I/?vel view

(b1)

User | System Hyp 1 Supervisor | Abort Undefined | Monitor * IRQ FIQ

RO RO_usr

R1 R1_usr

R2 R2_usr

R3 R3_usr

R4 R4_usr

R5 RS_usr

R6 R6_usr

R7 R7 _usr

R8 R8 usr R8_fiq
R9 R9_usr R9_fiq
R10 R10_usr R10_fig
R11 R11_usr R11_fig
R12 R12_usr R12_fiq
SP SP_usr SP_hyp SP_svc SP_abt SP_und SP_mon |SP_irg SP_fiq
LR LR _usr LR_svc LR_abt LR_und LR_mon LR_irq LR_fiq
PC PC

APSR |[|CPSR

SPSR_hyp |SPSR_svc |SPSR_abt |SPSR_und [SPSR_mon |SPSR_irq |SPSR_fiq

ELR_hyp

1 Exists only in Secure state.
T Exists only in Non-secure state.
Cells with no entry indicate that the User mode register is used.

CSUN B sorrware
ARM Assembly & e

2016-2023
COMP122 ARM Ref

dep-re-cate | 'deprskat |

verb [with object]

1 express disapproval of: what | deprecate is persistent indulgence.

- (be deprecated) (chiefly of a software feature) be usable but regarded as obsolete
and best avoided, typically due to having been superseded: this feature is
deprecated and will be removed in later versions | (as adjective deprecated) : avoid
the deprecated <blink> element that causes text to flash on and off.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

RISC vs CISC

@ren DR JEFF
LJQ SOFTWARE
© Jeff Drobman
2016-2023

old CISC
8-Bit MPU’s
(18080)

C

» See separate slide set “MCS8”

FF
T 84 sorrware
CSUN [] CC)/.\jé?}PEDrlgglh?an
CALIFORNIA) I8008 M P

2016-2023
MCS-8 ——
COMP122

CERAMIC PACKAGE OUTLINE

ALTERNATE PIN =1 IDENT,
(IF NO NOTCH AT END OF PKkG,)

275
.295

.100/150

4 15omAX.
o .008 TYP.—>/ /L’
-— ~>l _019 === B .012

REF, ™ 023 .060

CSUN : B sorrware
iI8080 Code & e

2016-2023
COMP122

O John Stephenson, Analyst programmer
magnetic tape reels.

Answered 9h ago

Set low byte A =all 1's or all 0’s
Several methods:

1 MOV AL,FF <mm MOV
2

3

4 OR AL,FF

5

6

7 XOR AL,AL

E

NOT AL

S DR JEFF

CSUN . SOFTWARE

peCAuronNn M CS_S: |8008 R
2016-2023

COMP122 T gy — MCSE —
mcs-s |

MICRO COMPUTER SET| |

geg

T

D,
By -
Q’
D,
D5
Dg

CSUN

A soFrwARE
° °
CALIFORNIA INDIEAPPDEVELOPER
STATE UNIVERSITY I O ‘ I a ra I I l © Jeff Drobman
NORTHRIDGE 2016—2023
Do D Dy D3 D4 Ds Dg D7
???T???? INTERNAL DATA BUS
———
2 RegS (a, b) LR L) - SP ADDRESS
SSS OR DDD I
ERNAL DATA BUS : Reg Fi e
/ \ 3 ? 1 } 2 ACCUMULATOR
REGISTER Q REGISTER b MEMORY CYCLE INSTRUCTION REGISTER ADORES el = AND
(8 BITS) 8 B POINTER o o
(8 BITS) CONTROL CODING] (8 BITS) A B) 1 U
‘—<_ Y?YY* ?‘? * A) 2.:,' ::",‘;-' SCRATCH PAD
EEIRE MEMORY
- SSlels &
REGISTER §§ 2% 7 WORDS x 8 BITS
e CARRY AND 2 2
LOOK AHEAD
(8 BITS) =~ e h INSTRUCTION MEMORY L)
UNIT AND >
DECODER i MEMORY
CONTROL 1/0 CONTROL REFRESH MULTIPLEXER AND
> {counter REFRESH o
8 - BIT PARALLEL | .
AoE p e 7 |CU - DRAM Ctl AMPLIFIERS
UNIT L : H
< \ 7 L 4 a ADDRESS STACK AND
Y 424 . ol e PROGRAM COUNTER
Sl B i S&l.18 § 8 WORDS x 14 BITS
' FLIP-FLOPS (Z,C,S,P)[—® - A - POINTER 2 é <8
AND CONDITION <r| |58
Pt <
Losic > M PC/SP Regs
Flags STATE TIMING >
-< GENERATOR -
STATUS >
SIGNALS 22 Y * A
CLOCK
(; é GENERATOR R"ZF‘;DY 'FN:
SYNC $o ?,
READY INTERRUPT

Figure 3.

8008 Block Diagram

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

System Block Diagram

1/0 INPY
INTERRUP

; PORTS Anp
INSTRUCT
e ION

MCS-8

bty

(> DaTa
—

r\‘ AR1%, 16K: 14-bit address
M BUFFERS %
&
r__——_—___~‘ ROM. R ‘s‘\“‘w
M AM
FF::::::::::: PXERS 8 BITS Byre ‘"““1
TO 16K BYTES ~ﬁ\1
}r ALY)
e e T
BusA MEMORY, T3> pEvice N e e S N R Ry
INTERRUPT 4o SELECT |E == ay
& |NPUT b—'——*‘_::::—__
~—t ——
ENABLES S
ADDRESS, coNTRoL | ADDRESS T
REGISTER - 8 BITS REGISTER - g 8iTs |
3 \)
-y i
BUFFERS
STATUS 4
o 0GIC
8008 S e EXTERNAL INTERRUPT
INT.
i i cLoCK
— GENERATOR

READY

Figure 8. MCS-8 Basic System

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN . O ARE
. C PU Peri p h era | S SRET

2016-2023
COMP122

Counters
Timers

= Am9511/12
INT = {287/387
controller = R3010

Floating-Pt
Math

= {8259 PIC
= Am9519

DRAN LI
EDC T
Parity bit controlier
= Am9518
P = AM9517

controller

ﬂ DII:TJEFFE
o I lSO WAR
e Computer Architecture e

2016-2023
COMP122

iy

Interrupts

CSUN : 83 soFrware
Interrupts vs Polling g

2016-2023
COMP122

Why do we use interrupts rather than polling in embedded
systems?

@ Jeff Drobman
oY Lecturer at California State University, Northridge (2016—present) - Just now

we use either or both in embedded systems. it is a hardware vs software tradeoff, as
interrupts need extra hardware logic. it will be cheaper to use polling for simple
applications.

AAAAAAAAAAAA
STATE UNIVERSITY

COMP122

MIPS Interrupts

DR JEFF

23| soFTwaRE

INDIE APPDEVELOPER
© Jeff Drobman
2016-2023

>»NMI =2 Non Maskable <Power-on
»NVI =2 Non Vectored <BIOS

> V| =2 Vectored
= \ectors €< Devices:

1) Keyboard

Device ID 2) Mouse
Placed on Data Bus

, 3) Display
Read with Load Byte]
4) Printer

5) USB

CSUN s sggTJv%i;E
R Interru pt S b o

2016-2023

COMP122 General MIPS —
+» MASKABLE .
€ INTO (Pin 33) ** GIE (2) — global (2 groups)
D NMI (non'maSkabIE) ‘ INT 1 (Pln 34) ’:, MGS/(INT 0_7
= Power-ON RV INT 2 (Pin 35)

L INT (maskable) 1
. & INT7
“* VECTORED PRIORITIES

O NVI (non-V)

Q Vi ** HIGH

< LOW

+* PRIORITY (PIC)
 High

O Low (High INTs “preempt” Low) _

¢ INTERNAL

O Hardware events “* PC ARSI 21112
[T|mers ‘:’ STATUS
= ADC «» CAUSE

= 1/O(S, P)
L Software exceptions

CSUN B sorrware
Lab 4 INT Model & e

2016-2023
COMP122 INT’s Used: 4

Hierarchy: Priority

**MASKABLE (3)
d 1 NMI (nhon-maskable)

= Power-ON Reset Timer

O 2 INT (maskable)

«+VECTORED (2)

M 1 NVI (non)
d1vVi

< TIMER (1)

CSUN B8 e
Interrupt Handlers o i

COMP122 i

»* Decode Pending Interrupts
» Allocate memory for Handlers

s* Use Jump Table
 Order by Priority
d Test & Jump
(J Handlers as subroutines: jal = jr Sra

DR JEFF

CSUN |82 soFTWARE
T X86 Interru pts & i rabrman
NORTHRIDGE 2016'2023
COMP122 — tutorialspoint.com

Interrupt is the method of creating a temporary halt during program execution and
allows peripheral devices to access the microprocessor. The microprocessor responds
to that interrupt with an ISR (Interrupt Service Routine), which is a short program to

instruct the microprocessor on how to handle the interrupt.

The following image shows the types of interrupts we have in a 8086 microprocessor -

Interrupts

Hardware Software
Interrupt Interrupt

Non-Maskable

Maskable Interrupt
Interrupt

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

DR JEFF

(&) soFTwaARrE
X86 Interru ptS Jeff robman

2016-2023

Software Interrupts

Some instructions are inserted at the desired position into the program to create
interrupts. These interrupt instructions can be used to test the working of various
interrupt handlers. It includes -

INT- Interrupt instruction with type number

It is 2-byte instruction. First byte provides the op-code and the second byte provides
the interrupt type number. There are 256 interrupt types under this group.

Its execution includes the following steps -

d

-]

Flag register value is pushed on to the stack.

CS value of the return address and IP value of the return address are pushed
on to the stack.

IP is loaded from the contents of the word location ‘type number’ x 4
CS is loaded from the contents of the next word location.

Interrupt Flag and Trap Flag are reset to O

CSUN 83 soFrware
AT X86 SW Interru pt S O et Brobrman

2016-2023
COMP122

The starting address for typeO interrupt is 000000H, for type1 interrupt is 00004H
similarly for type2 is 00008H and so on. The first five pointers are dedicated
interrupt pointers. i.e. —

2 TYPE 0 interrupt represents division by zero situation.

L

TYPE 1 interrupt represents single-step execution during the debugging of a
program.

L

TYPE 2 interrupt represents non-maskable NMI interrupt.

L

TYPE 3 interrupt represents break-point interrupt.

L

TYPE 4 interrupt represents overflow interrupt.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

MIPS Pipeline on INT

FLUSH

A

MIPS

Instruction Fetch

Instruction Decode \
Register Fetch

N

Execute

Address Calc.

Memory Access

Wiki —

Write Back
WB

IF ID EX MEM
Next PC
Next SEQ PC Next SEQ PC |
g
RS1 p>3
Branch
RS2
Register taken
File
— -
5 o R
= ok =
lw)
Lo = E u
. Sign | Imm
Extend

A

M/ W3

A

A

A

H

MIPS, showing the five stages (instruction fetch, instruction decode, execute, memory access and write back).

WB Data

DR JEFF

SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN . (5 B
swmme lnterrupts & Exceptions o e

2016-2023
COMP122

COMP 122: Computer
P&H Ch 7 Architecture and

Assembly Language

7.7 Exceptions and interrupts Spring 2020

(Original section")

COD Section 4.9 (Exceptions) describes the MIPS exception facility, which responds both to exceptions caused by errors during an
instruction’s execution and to external interrupts caused by |/0 devices. This section describes exception and interrupt handling in more
detail.Z In MIPS processors, a part of the CPU called coprocessor 0 records the information the software needs to handle exceptions and
interrupts. The MIPS simulator SPIM does not implement all of coprocessor 0's registers, since many are not useful in a simulator or are
part of the memory system, which SPIM does not implement. However, SPIM does provide the following coprocessor 0 registers:

Figure 7.7.1: Coprocessor 0 registers.

=== -]
name number

BadVAddr 8 memery address at which an offending memory reference occurred
. Count ‘ 9 ' timer
. Compare | 11 ' value compared against timer that causes interrupt when they match
i | Status 12 | interrupt mask ¢ nd enable bits
[Cause [13 ‘ exception type é hd pending interrupt bits
TUUEPC T 14 address of instruction that caused exception
f Config 16 configuration of machine

E Feedback?

Interrupt handler. A piece of code that is run as a result of an exception or an interrupt.

DR JEFF

CSUN . S%E‘ILXEIE&EQE
swmme o lnterrupts & Exceptions T e

COMP122 COMP 122: Computer
P&H Ch 7 Architecture and

Figure 7.7.2: Thestatus/register (COD Figure EELIAELLIELE

Spring 2020
A7.1).
c

: £ 8o

8 interrupts 285 E3

SEDBES

15 8 4 10

Interrupt
mask

Mask(n) & Pending(n) = INT(n)
Figure 7.7.3: Thelcausejregister{COD Figure
A.7.2).

Branch Pending Exception
delay interrupts code

swmme lnterrupts & Exceptions o e

2016-2023
COMP122

COMP 122: Computer
P&H Ch 7 Architecture and

Assembly Language
Spring 2020

Figure 7.7.4: Causes of exceptions.

“amber | tamo | Coneo o axcapion
o

' E ' interrupt (hardware)
4 ' AdEL [address error exception (load or instruction fetch)
5 AdES address error exception (store)
6 IBE bus error on instruction fetch
7 ‘ DBE ' bus error on data load or store
8 ‘ ~ Sys | syscall exception
G 'B—p. ‘ breakpoint exception
10 ‘ Rl ‘ reserved instruction exception
11 ‘ CpU ‘ coprocessor unimplemented
12 ‘ Ov ‘ arithmetic overflow exception
13 ' Tr [trap
15 FPE floating point

Exception
code

aFe DR JEFF
25| soFTwaRE

CSUN

CALIFORNIA | (: I : I INDIE APP DEVELOPER
STATE UNIVERSITY DEC D P D P— © Jeff Drobman
NORTHRIDGE

PDP/VAX

2016-2023

COMP122

15t LSI-chip Computer —— 1970 — Wiki ——

PDP-11/40. The processor is at the L=
bottom. A TUS6 dual DECtape drive is
installed above it.

@ DR JEFF
CSUN 23 soFTwARE
. DEC D E C P D P_ 1 1 Seesesmi

NORTHRIDGE PDP/VAX

2016-2023
cOMP122 1970 — Wiki

/
No dedicatstructlons [edit *« MMIO

Early models of the PDP-11 had no dedicated bus for input/output, but only a system bus called the Unibus, as input and output devices were mapped to memory
addresses.

An input/output device determined the memory addresses to which it would respond, and specified its own interrupt vector and interrupt priority. This flexible

Interrupts I [edit]

The PDP-11 supports hardware interrupts at four priority levels. Interrupts are serviced by software service routines, which could specify whether they themselves

could be interrupted (achieving interrupt nesting). The event that causes the interrupt is indicated by the device itself, as it informs the processor of the address of its
own interrupt vector.

_Interrupt vectors are blocks of two 16-bit words in low kernel address space (which normally corresponded to low physical memory) between 0 and 776. The first

word of the interrupt vector contains the address of the interrupt service routine and the second word the value to be loaded into the PSW (priority level) on entry to
the service routine.

Instruction set orthogonality |edit]
See also: PDP-11 architecture

The PDP-11 processor architecture has a mostly orthogonal instruction set. For example, instead of instructions such as load and store, the PDP-11 has a move
instruction for which either operand (source and destination) can be memory or register. There are no specific input or output instructions; the PDP-11 uses memory-

mapped I/O and so the same move instruction is used; orthogonality even enables moving data directly from an input device to an output device. More complex
instructions such as add likewise can have memory, register, input, or output as source or destination.

Most operands can apply any of eight addressing modes to eight registers. The addressing modes provide register, immediate, absolute, relative, deferred (indirect),
and indexed addressing, and can specify autoincrementation and autodecrementation of a register by one (byte instructions) or two (word instructions). Use of
relative addressing lets a machine-language program be position-independent.

. (5 Bt
PIC. Priority Interrupt Enc ™ exivene

2016-2023

COMP122

‘o DR JEFF
CSUN] 253 soFrware
pCAonNI | 8 2 5 9 P | (oesrommoren
NORTHRIDGE

2016-2023
COMP122

The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel 8086 microprocessors.
The initial part was 8259, a later A suffix version was upward compatible and usable with the 8086 or 8088 processor. The
8259 combines multiple interrupt input sources into a single interrupt output to the host microprocessor, extending the
interrupt levels available in a system beyond the one or two levels found on the processor chip. The 8259A was the
interrupt controller for the ISA bus in the original IBM PC and IBM PC AT.

The 8259 was introduced as part of Intel's MCS 85 family in 1976. The 8259A was included in the original PC introduced
in 1981 and maintained by the PC/XT when introduced in 1983. A second 8259A was added with the introduction of the
PC/AT. The 8259 has coexisted with the Intel APIC Architecture since its introduction in Symmetric Multi-Processor PCs.
Modern PCs have begun to phase out the 8259A in favor of the Intel APIC Architecture. However, while not anymore a
separate chip, the 8259A interface is still provided by the Platform Controller Hub or Southbridge chipset on modern x86
motherboards.

-cs{% 1~ 28 %vcc
WwRr[]2 271 A0
-RD |3 26 E-INTA % |[RO-7
p7]a 25 [1IR7 o
Deé 5 24 %IR6 ** DO-7
psl |6 23| JIRs RN _
pal |7 sl;gtsesla 22[1IR4 » CASO-3
p3l]s 21[JIr3 % INTReq
D2l]9 20]IRr2
p1l]10 19 []Ir1
pol |11 18| /IR0
CAS OE 12 17 % INT
&l cas1l]13 16| 1-SP/-EN
Closeup of an Intel 8259A IRQ chip N D 15 cas 5

from a PC XT.

Pinout &3

@ DR JEFF
CSUN . 23 soFTwARE
pCAonNI | 8 2 5 9 P | C oesrommoren
NORTHRIDGE 2016—2023

COMP122

53

*

IRO-7
DO-7
CASO-3
INTReq

» Trigger: Edge vs. Level
» Priority: Fixed vs. Rotating

K/ K/
000 000

53

*

NEC D8259AC, used on the original 57
IBM PC motherboard.

Functional description [edit)

The main signal pins on an 8259 are as follows: eight interrupt input request lines named IRQO through IRQ7, an interrupt request output line named INTR,
interrupt acknowledgment line named INTA, DO through D7 for communicating the interrupt level or vector offset. Other connections include CASO through CAS2
for cascading between 8259s.

Up to eight slave 8259s may be cascaded to a master 8259 to provide up to 64 IRQs. 8259s are cascaded by connecting the INT line of one slave 8259 to the
IRQ line of one master 8259.

There are three registers, an Interrupt Mask Register (IMR), an Interrupt Request Register (IRR), and an In-Service Register (ISR). The IRR maintains a mask of
the current interrupts that are pending acknowledgement, the ISR maintains a mask of the interrupts that are pending an EOI, and the IMR maintains a mask of
interrupts that should not be sent an acknowledgement.

End Of Interrupt (EOI) operations support specific EOI, non-specific EOI, and auto-EOI. A specific EOI specifies the IRQ level it is acknowledging in the ISR. A
non-specific EOIl resets the IRQ level in the ISR. Auto-EOI resets the IRQ level in the ISR immediately after the interrupt is acknowledged.

Edge and level interrupt trigger modes are supported by the 8259A. Fixed priority and rotating priority modes are supported.

The 8259 may be configured to work with an 8080/8085 or an 8086/8088. On the 8086/8088, the interrupt controller will provide an interrupt number on the data
bus when an interrupt occurs. The interrupt cycle of the 8080/8085 will issue three bytes on the data bus (corresponding to a CALL instruction in the 8080/8085
instruction set).

The 8259A provides additional functionality compared to the 8259 (in particular buffered mode and level-triggered mode) and is upward compatible with it.

[r—— DR JEFF
CSUN . B4 soFTrwaARE
. | 8 2 5 9 P | C Jepaian
NORTHRIDGE 2016—2023
COMP122
x86 IRQs [edit)

Typically, on systems using the Intel 8259 PIC, 16 IRQs are used. IRQs 0 to 7 are managed by one Intel 8259 PIC, and IRQs 8 to 15 by a second Intel 8259 PIC.
The first PIC, the master, is the only one that directly signals the CPU. The second PIC, the slave, instead signals to the master on its IRQ 2 line, and the master
passes the signal on to the CPU. There are therefore only 15 interrupt request lines available for hardware.

On newer systems using the Intel APIC Architecture, typically there are 24 IRQs available, and the extra 8 IRQs are used to route PCI interrupts, avoiding conflict
between dynamically configured PCI interrupts and statically configured ISA interrupts. On early APIC systems with only 16 IRQs or with only Intel 8259 interrupt
controllers, PCI interrupt lines were routed to the 16 IRQs using a PIR integrated into the southbridge.

The easiest way of viewing this information on Windows is to use Device Manager or System Information (msinfo32.exe). On Linux, IRQ mappings can be viewed
by executing cat /proc/interrupts orusing the procinfo utility.

Master PIC | edit)

« |IRQ 0 - system timer (cannot be changed)

IRQ 1 - keyboard controller (cannot be changed)

IRQ 2 - cascaded signals from IRQs 8-15 (any devices configured to use IRQ 2 will actually be using IRQ 9)

« |IRQ 3 - serial port controller for serial port 2 (shared with serial port 4, if present)

IRQ 4 - serial port controller for serial port 1 (shared with serial port 3, if present)

« |IRQ 5 — parallel port 2 and 3 or sound card

IRQ 6 — floppy disk controller

« IRQ 7 - parallel port 1. It is used for printers or for any parallel port if a printer is not present. It can also be potentially be shared with a secondary sound card
with careful management of the port.

Slave PIC [edit)]

« |IRQ 8 - real-time clock (RTC)

« IRQ 9 - Advanced Configuration and Power Interface (ACPI) system control interrupt on Intel chipsets.[?] Other chipset manufacturers might use another
interrupt for this purpose, or make it available for the use of peripherals (any devices configured to use IRQ 2 will actually be using IRQ 9)

« |RQ 10 - The Interrupt is left open for the use of peripherals (open interrupt/available, SCSI or NIC)

« |IRQ 11 = The Interrupt is left open for the use of peripherals (open interrupt/available, SCSI or NIC)

« IRQ 12 — mouse on PS/2 connector

« |IRQ 13 - CPU co-processor or integrated floating point unit or inter-processor interrupt (use depends on OS)

« |IRQ 14 — primary ATA channel (ATA interface usually serves hard disk drives and CD drives)

« |RQ 15 — secondary ATA channel

CSUN)-8 vane
Interrupt Handlers
COMP122 -Quora

How do you handle interrupt management (algorithms,

computer architecture, operating systems, memory

management, process scheduling, programming)?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-present)

Answered just now

there must be interrupt handler code (a subroutine) to process each interrupt and its
source. microprocessors all have a mechanism to recognize enabled and pending interrupts.
for example, MIPS has 8 interrupts, with enables and pending bits in its Status and Cause
registers. upon an interrupt recognition by the ICU, the CPU vectors to a fixed address in the
kernel text segment. there, code first disables some or all interrupts; saves some state (a set
of registers) on the stack; then parses the pending interrupts, and uses a priority branch
table to vector to the specific interrupt handler. at the end of processing, a “return from
interrupt” (ERET in MIPS) is executed.

CSUN = sg_lsTJv::/:;E
Interrupts C Example o i

2016-2023
COMP122

#include <p18f4321.h>

void ISR (void); //declares ISR as sub after main
#pragma code Int=0x08

void Intasm()

{

_asm //use assembly code
GOTO ISR
_endasm
}
#pragma code //org main
Void main()
{
// do stuff here
While(1) { }
}
H#pragma interrupt ISR
Void ISR (void) //interrupt svc routine
{ //do int stuff

}

CSUN . . == sSETJ\g%ZEE
Config Interrupts in C o i

2016-2023
COMP122

EXTERNAL INTS - PIC18F —
Void ISR(); //declare the “ISR” subroutine

#pragma code int_vectH = 0x08 //assign int “vector” for High Pri Int = SET ORGS

Void IntH() {

_asm //use assembly code here (no “GOTO” in C) Or use a “Call”:
GOTO ISR ISR()

_endasm

#pragma code int_vectL = 0x18 //assign int “vector” for Low Pri Int
#pragma code //main starts here (after the Ints)

Void main ()

{

ADCON1=0x0F; //config Port B as input for interrupts PINS
INTCONDbits.INTOIE =1 //enable INTO @ INTO - RBO
INTCON3bits.INT1IE =1 //enable INT1 SETUP ¢ INT1- RB1
INTCONDbits.INTOF = 0 //clear flag € INT2 > RB2

INTCON3bits.INT1F = 0 //clear flag

INTCON3bits.INT1IP =0 //set INT1 to Low priority
RCONbits.IPEN = 1 //enable all priority interrupts
INTCONbits.GIEH = 1 //enable Global High priority interrupts
INTCONbits.GIEL =1 //enable Global Low priority interrupts
While(1); //wait for INTO or INT1

}

DR JEFF

swmme o lnterrupts & Exceptions T e

2016-2023
COMP122

COMP 122: Computer
P&H Ch 7 Architecture and

. bly L
0x80000180 ol
mov $k1, $at # Save $at register

sw $a0, # Handler is not re-entrant and can't use
sw $al,|savel | # stack to save $a0, $al

Don't need to save $k0/$kl

mfc@ $kO, $13 # Move Cause into $k©

srl $a0, $ko, 2 # Extract ExcCode field
andi $a@, $a0@, Oxf

bgtz $a0 # Branch if ExcCode is Int (@)

mov $a@, $kO # Move Cause into $a@
mfco $al, $14 # Move EPC into $al

jal |print_excp| # Print exception error message

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

8\ DR JEFF
| SOFTWARE

INDIE APPDEVELOPER

Interrupts & Exceptions s

mfco
addiu

mtcO

$ko,| $14
$ko,| $ko, 4

mtcO

mfc@
andi
ori

mtco

1w
1w
mov

$k0,| $14

$0, $13
$k0,| $12
$k0, | Oxfffd
$ko, | 0x1
$k0, | $12

$al,] savel

$at, $kil

I.kdatal

save:
savel:

.word 0
.word 0

2016-2023

P&H Ch 7 COMP 122: Computer

% % W

#

Architecture and

Assembly Language
Bump EPC Spring 2020
Do not re-execute
faulting instruction
EPC

Clear Cause register

Fix Status register
Clear EXL bit
Enable interrupts

Restore registers

Return to EPC

s DR JEFF
CSUN |§| SOFTWARE
STATE UNIVERSITY © Jeff Drobman

CONCI)\R/'IrHPRiDEEZ S e Ct I O n 2016-2023

Orther Harcdware

** ADC Converters
**Serial I/0

CSUN

DR JEFF
SOFTWARE

[
INDIE APPDEVELOPER
CALIFORNIA r] r ‘
STATE UNIVERSITY D a ta CO Ve rS I O ©JeffDrobman
NORTHRIDGE

COMP122

2016-2023

Embedded Control lives in an ANALOG world

DIGITAL

PROCESSOR
ANALOG IN mmmm) ADC

[:Q 1011010010

DAC =) ANALOG OUT
10110100]

“* ADC
< Typ 8-14 bits (resolution)
<> Flash or SAR

** DAC
<> Byte (8-bit)
<> Resistor ladder

Electrical symbol |edit]

n, N ADC out— JUL

DR JEFF

CSUN

. SOFTWARE
INDIE APPDEVELOPER
STA?I'::LJZ?\?:;QITY A D ((h I S © Jeff Drobman
NORTHRIDGE 2016‘2023

COMP122 ..
~ Analog-to-digital converter

From Wikipedia, the free encyclopedia

INTERSIL ICL7107. 31/2 digit single-chip &
A/D converter

AD570 8-bit successive-approximation =
analog-to-digital converter

AD570/AD571 silicon die &

ICL7107 silicon die =

CSUN

@A) sorrware

° .
CALIFORNIA INDIE APP DEVELOPER
STATE UNIVERSITY l l a I ltl Z at I O l l © Jeff Drobman
NORTHRIDGE

COMP122

2016-2023

Analog-to-digital converter

From Wikipedia, the free encyclopedia

An ADC has several sources of

errors. Quantization error and (assuming
the ADC is intended to be linear) non-
linearity are intrinsic to any analog-to-digital
conversion. These errors are measured in a
unit called the least significant bit (LSB). In
the above example of an eight-bit ADC, an
error of one LSB is 1/256 of the full signal
range, or about 0.4%.

fig. 1 /\/\/\

Conversion A-D

fig. 2

Conversion D-A

fig. 3

Analog to digital conversion as =
shown with fig. 1 and fig. 2.

https://en.wikipedia.org/wiki/Quantization_(signal_processing)
https://en.wikipedia.org/wiki/Linearity
https://en.wikipedia.org/wiki/Least_significant_bit

3 DR JEFF
CSUN &5 soFTwaRrE
r AT SAR ADC O et Braman

2016-2023
COMP122

Analog-to-digital converter

From Wikipedia, the free encyclopedia

Successive approximation

A successive-approximation ADC uses a comparator and a
binary search to successively narrow a range that contains the
input voltage. At each successive step, the converter
compares the input voltage to the output of an internal digital
to analog converter which initially represents the midpoint of
the allowed input voltage range. At each step in this

process, the approximation is stored in a successive
approximation register (SAR) and the output of the digital to
analog converter is updated for a comparison over a narrower
range.

CSUN &3 IsgﬁTJv%i;E
R F | as h A D C i

= -)
COMP122 Analog-to-digital converter

From Wikipedia, the free encyclopedia

Direct-conversion

A direct-conversion or flash ADC has a bank of comparators sampling the input
signal in parallel, each firing for a specific voltage range. The comparator bank
feeds a digital encoder logic circuit that generates a binary number on the output
lines for each voltage range.

ADCs of this type have a large die size and high power dissipation. They are often
used for video, wideband communications, or other fast signals

in optical and magnetic storage.

The circuit consists of a resistive divider network, a set of op-amp comparators and
a priority encoder. A small amount of hysteresis is built into the comparator to
resolve any problems at voltage boundaries. At each node of the resistive divider, a
comparison voltage is available. The purpose of the circuit is to compare the analog
input voltage with each of the node voltages.

The circuit has the advantage of high speed as the conversion takes place
simultaneously rather than sequentially. Typical conversion time is 100 ns or less.
Conversion time is limited only by the speed of the comparator and of the priority
encoder. This type of ADC has the disadvantage that the number of comparators
required almost doubles for each added bit. Also, the larger the value of n, the more
complex is the priority encoder.

https://en.wikipedia.org/wiki/Comparator
https://en.wikipedia.org/wiki/Encoder
https://en.wikipedia.org/wiki/Logic_circuit
https://en.wikipedia.org/wiki/Die_(integrated_circuit)
https://en.wikipedia.org/wiki/Video
https://en.wikipedia.org/wiki/Wideband_communications
https://en.wikipedia.org/wiki/Optical_storage
https://en.wikipedia.org/wiki/Magnetic_storage

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Maxim/ADI ADC

@ DR JEFF
IQ'SOFTWARE

© Jeff Drobman
2016-2023

maxim

integrated.

Part Number NN

Filter by part number

MAX19191 Ultra-Low-Power,
10Msps, 8-Bit ADC
MAX19507 Dual-Channel, 8-
Bit, 130Msps ADC

MAX19506 Dual-Channel, 8-
Bit, 100Msps ADC
MAX19505 Dual-Channel, 8-
Bit, 65Msps ADC

MAX19515 Dual-Channel,
10-Bit, 65Msps ADC

MAX19517 Dual-Channel,
10-Bit, 130Msps ADC

NOW PART OF

ANALOG
DEVICES

Resolution
(bits)
N

10

10

Input Channels
N

Sample Rate
(max)
(Msps)

™N

10

130

100

65

65

130

Data Bus
Interface

uP/8

Selectable
Dual/Mux'd CMOS

Selectable
Dual/Mux'd CMOS
Selectable
Dual/Mux'd CMOS
Selectable
Dual/Mux'd CMOS

Selectable
Dual/Mux'd CMOS

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Maxim/ADI ADC

@ DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

maxim

integrated.

NOW PART OF

ANALOG
DEVICES

Precision ADCs (< 5Msps)

Part Number NN

Filter by part number

MAX11410A 24-Bit Multi-
Channel Low-Power 1.9ksps
Delta-Sigma ADC with PGA
MAX19777 3Msps, Ultra-tiny,
Low Power, 2 Channel, Serial
12-Bit ADC

MAX11261 24-Bit, 6-Channel,
16ksps, 6.2nV/jiHz PGA,
Delta-Sigma ADC with 12C
Interface

Resolution
(ADC)
(bits)

N

24

12

24

Input Channels

10

Conv. Rate
(max)
(ksps)

N

1.92

3000

16

Data Bus

SPI

SPI

ADC
Architecture

N

Sigma-Delta

SAR

Sigma-Delta

AAAAAAAAAAAA
STATE UNIVERSITY

COMP122

Peripherals

DR JEFF

23| soFTwaRE

INDIE APPDEVELOPER
© Jeff Drobman
2016-2023

**Serial I/O
] USB
12C
4 SIO
0 UART (RS-232C)

**Counters/Timers

d GP
 Watchdog Timer

Serial I/O

2016-2023
COMP122

QllOra @ E E‘D:j. g Q Search Quor

Universal Asynchronous Receiver/Transmitter (UART) UArts SPl 12¢c Microcontrollers

Embedded Systems +2 /2

Are UART, SPI, and I12C implementations microcontroller
dependent?

@ Jeff Drobman, works at Dr Jeff Software

Answered just now

they are all industry standard serial communications. they include protocols
implemented in software, plus hardware that includes serial-to-parallel conversion
using registers. some of that hardware is included on some microcontrollers.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

RS 232

(=)

—&

\ \ooooooooooooo’—)
O\‘ R E R R IR O

" 55
DB-25
DTE OTE
TxD TxD
RO : : :‘_‘ D

ownd

“Null Modem” cable

DB-9

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

gra) DR JEFF
CSUN QSOFTWARE
EIA (RS) 232 B
T NORTHRIDGE 16,2003

COMP122

E1A232 L

Electronics Industries Association (EIA) 232 (RS232) is a senal communication standard, which you must know whlle
connecting the PIC trainer. It is a standard for transmitting data serially. The RS232 protocol running on the console port is
the same communications protocol format used on a computer’s COM and COM2 ports. In PIC18F, the USART module
supports RS232 operation using internal oscillator block. The connector for the serial communications port on the

computer is either DB-9 or DB-25 type connector.

The table below shows the pin assignment for the RS232 associated with the DB-9 connector:

EZLEM Function
RTS Ready-to-Send 1 8 B-9
Pin 3 DTR Data Terminal Ready 2 7 Pin 6

TX) |™D Transmit Data 3 6 —) RX

GND Ground 4 5

GND Ground 5 4 .
Dataset Terminal
(/VI odem) RXD Receive Data 6 3

DSR Data Send Ready 7 2

CTS Clear-to-Send

AAAAAAAAAAAA
STATE UNIVERSITY

COMP122

Networks

DR JEFF

23| soFTwaRE

INDIE APPDEVELOPER
© Jeff Drobman
2016-2023

s*Ethernet (IEEE 802.3)
d MAC (PMI + Layer 2)
 PHY (PMD: Layer 1)

**WiFi (IEEE 802.11)
d MAC (PMI + Layer 2)
 PHY (PMD: Layer 1)

DR JEFF

CSUN : E)sorrware
e Computer Architecture

2016-2023
COMP122

ICU

software is executed by any computer according to
the rules of its instruction set (ISA), and
implemented by lots of logic in a state machine
called the Instruction Control Unit, which
produces a set of bits to control the entire
computer each clock cycle.

4

L)

* FSM vs Microprogramming
* Pipelining

(R

L)

L)

CSUN : B sorrware
Instruction Decode & e

2016-2023
COMP122 IcU

How does a computer read instructions? How does a computer

know that "01" is to make a mov operation and that "10" is to
make a xor operation?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-present)

Answered just now

a CPU has a large set of control bits (typ 100+) that are generated by the “Control Unit”
logic by decoding the opcode and other instruction fields. the ALU operation itself has typ.
4 control bits to select 1/16 operations (add, sub, xor, etc.). there are also bits to select the
inputs to each side of the ALU via its "mux”.

Clock

Control bits

| DR JEFF
CSUN &5 soFTwARE
Aoy | C U Seesesmi
2016-2023

COMP122

dInstruction Control Unit (ICU)
¢ Decode

> OpCode Clock = | Operand decode | ,g
2.5 GH
> Operands = ICU
= ALU muxes OpCode decode)
= GRdest mux — +Adder
(dedicated
or in ALU)

** Calculate (adder)

» Effective Address (EA)
= Load/Store: GR + Immed/offset (indexed)
= Branches: PC + offset

4

L)

* FSM vs Microprogramming
* Pipelining

L)

L)

o0

CSUN SOFTWARE

TR ICU: FSM et
NORTHRIDGE e 2016-2023
COMP122 - Logic based State Machine Mealy-Moore —
Instruction register

Clock Operands/Im

** Plus: fast
** Minus: complex logic

Combinational

ulnstructio

Clock

Control bits

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ICU: FSM

&% DR JEFF
E SOFTWARE

© Jeff Drobman
2016-2023

Hennessy & Patterson Ch 10

Figure 10.3.2: The control unit for MIPS will consist of some control logic

and a register to hold the state (COD Figure D.3.2).

The state register is written at the active clock edge and is stable during the clock cycle.

PCWrite

PCWriteCond

lorD

MemRead

MemWrite

IRWrite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSIEA Control bits

RegWrite

RegDst

NS3

NS2

NS1

NSO

FSM
Control logic
Outputs <
Inputs
) A
EEEEEREEE
Instruction register State register
opcode field

IR

T t |

State bits

@) DR JEFF
CSUN SOFTWARE
. ICU: FSM 8o Brobman
NORTHRIDGE []

2016-2023
COMP122

Hennessy & Patterson Ch 10

Figure 10.2.3: The ALU control block generates the four ALU control bits, based on the function code
and ALUOp bits (COD Figure D.2.3).

ALUOp Inputs
Op5
Y ALU control block Op4
ALUOPpO Op3
ALUOp1)OperationB . Op2
Op1
Operation2 Op0 ' ¢)
F3 = ' § [do8f1 [&]&1]
sl ti
F2 ' Operation1 s
F(5-0) 1 j >— Outputs
El TN Operation0 R-format Iw sw beq
o 10
FO
D— ALUSrc
MemtoReg
) RegWrite
MemRead
MemWrite
Branch
ALUOp1
ALUOpO

R ICU: Microprogram S i
COMP122 - ROM based State Machine —

Instruction Register % Plus: simply organized

Microprogram Opcode [+ Clock & Minus: too slow

Sequencer MNP ¢ Replacement: FSM
(small FSM)

Clock

Microprogram

ulnstructio

Clock

Control bits

CSUN . (5 B
ICU: Microprogram o o

2016-2023
COMP122

Hennessy & Patterson Ch 10

Control unit PCWrite

PCWriteCond
lorD
Microcode memory MemRead Datapath
MemWrite
IRWrite
BWrite
Outputs % MemtoReg
| PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst
AddrCtl

Input

R
NV | RG] Clock
N/

Adder

Address select logic

;1 Figure 10.4.6: The control unit as a microcode |
O
I

Instruction register
IR i

opcode field

CSUN : 8 sorrware

INDIEAPPDEVELOPER
pChuroria |\/| lcroproeram oesrommoren
NORTHRIDGE 2016‘2023
COMP122

Address Select Logic as Table

Instr

A Microprogram
Table (|n ROM)

Microprogram assembly language
ALU_OP=ADD, AMUX=GRA, BMUX=Shift > 100 Control bits

ALU GR GR GR
(0] » SHIFT dec A |decB |[decD

GRA Shift 5 S8 S6 S3 ALU
BR PC Offset O 0 0 0 0
SUBI GRA Imm O S4 0 S5 ALU

CSUN . . £ sorrware
Microprogramming o i

2016-2023
COMP122

What is a hybrid microprogrammed control unit in computer
architecture?

Jeff Drobman - just now
@ Lecturer at California State University, Northridge (2016-present)
in microprogramming, a “microinstruction” is a linear set of all the control bits sourced by
the Instruction Control Unit (ICU) each clock cycle. it is typically 100-200 bits. in a pure
hardware ICU, a complex logic state machine provides the microinstructions. in a pure
“"microprogrammed” ICU, each microinstruction is read out of a dedicated ROM memory

addressed by a micro program counter (MPC). each machine instruction in the ISA has a
corresponding microprogram subroutine to define it.

all early microprocessors were CISC and used microprogrammed ICU's. once it was realized
that reading from a ROM each cycle was a big bottleneck that slowed down the
microprocessor, the new RISC architecture eliminated it and replaced it with a hardware ICU.

now microprogrammed ICU’s are back in a limited way in x86 micro-architecture in what is
called by Intel "micro ops”. this is considered a hybrid ICU.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

Computer Architecture — eiem

2016-2023

@ 'J@ U » See separate slide set
Orgamnization:
Bii-slice
AT

Bit-slice
N

Am2900

"

DR JEFF

Am2900 Data Book & e

COMP122 AM2900 —

"m Pu Pu

P

O -
s @
Qc, . 6 @ ® &
yb\\? ;’\0%@*\ Y o

%)
RO QP
u Pu Pu Pu Py Pu Pu Pu Pu Pu P Pu Pu P Pu P Pu P P Pu Pm
s Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu Pe Pu Paba
" Pu Pu Pu Pu Pu Pu Pu Pu Pu Pu P Pu Pu Pu P Pu P P P |
P P Pu Pu Pu Pu Pu Pu P Pu P Pm Pu P P P P P P P
' P Pu Pu Pu Pu Pu Pu Pu Pu P Pu Pu Pu Pu Pa Pu P PP
ﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂaa
'w Pu Pu Pu Pu Pu Pu Pu P Pu Pu bu bu Pu P Pu Pu Pu e u
AN N

o

pu o T
pu D\ T DT
Ty

pu Dyl pa

CSUN : B soFrware
Am2900 Family S

2016-2023
COMP122 Bit-slice 1975-85 ——

AMD 2901 bit-slice processor family includes 2901 and 2903 4-bit microprocessors slices, 2909 and 2911 microprogram sequencers,
2910 microprogram controller and other support chips. The 2901 processor consists of 16 4-bit registers, 4-bit ALU and associated
decoding/multiplexing circuits. The ALU accepts 9-bit microinstructions that specify source operands, ALU function and the destination
register. The 2901 ALU can perform 8 different functions (they are encoded into 3 bits within the microinstruction): addition, subtraction
and logic operations. Multiple 2901 bit-slice processors could be combined together to build microprocessors with any data width (in 4 bits
increments).

Enhanced version of 2901, AMD 2903 has 9 new special ALU functions used for implementation of multiplication, division and
normalization operations. The number of arithmetic and logic ALU functions in 2903 was increased to 15.

AMD Am2903: 4-bit-slice ALU

CSUN B sorrware

[]
i Am2900 Famil T
NORTHRIDGE 2016'2023
COMP122 o
- Bit-slice 1975-85 ——
Members of the Am2900 family |edit]
The Am2900 Family Data Book lists:(22]

« Am2901 — 4-bit bit-slice ALU (1975) « Am2925 - System Clock Generator and Driver
« Am2902 — Look-Ahead Carry Generator « Am2926 — Schottky 3-State Quad Bus Driver
« Am2903 — 4-bit-slice ALU, with hardware multiply SIS HAMEI20 = CRIN 3. BlIS S EIsCone:
« AM2905 — Bus Transceiver e« Am2930 - Main Memory Program Control
« Am2906 — Bus Transceiver with Parity * Am2932 — Main Memory Program Control
« Am2907 — Bus Transceiver with Parity e Am2940 - Direct Memory Addressing (DMA) Generator
« Am2908 — Bus Transceiver with Parity « Am2942 - Programmable Timer/Counter/DMA Generator
« Am2909 - 4-bit-slice address sequencer « Am2946/Am2947 - Octal 3-State Bidirectional Bus Transceiver
« Am2910 - 12-bit address sequencer « Am2948/Am2949 - Octal 3-State Bidirectional Bus Transceiver
« Am2911 - 4-bit-slice address sequencer « Am2950/Am2951 — 8-bit Bidirectional /O Ports
« Am2912 - Bus Transceiver « Am2954/Am2955 — Octal Registers
« Am2913 - Priority Interrupt Expander « AM2956/Am2957 — Octal Latches
* Am2914 — Priority Interrupt Controller « Am2958/Am2959 — Octal Buffers/Line Drivers/Line Receivers
* Am2915 — Quad 3-State Bus Transceiver « Am2960 — Cascadable 16-bit Error Detection and Correction Unit
o Am2916 —Quad 3-State Bus Transceiver « Am2961/Am2962 — 4-bit Error Correction Multiple Bus Buffers

« Am2917 — Quad 3-State Bus Transceiver

« Am2918 - Instruction Register, Quad D Register
« Am2919 - Instruction Register, Quad Register

« Am2920 - Octal D-Type Flip-Flop

« Am2921 - 1-to-8 Decoder

* Am2922 - 8-Input Multiplexer (MUX)

e« Am2923 - 8-Input MUX

« Am2924 - 3-Line to 8-Line Decoder

¢« Am2964 — Dynamic Memory Controller
« Am2965/Am2966 — Octal Dynamic Memory Driver

CSUN : B sorrware
2901 Block Diagram =

UL Am2900 Bit-slice 1975-85 —‘

MICROPROCESSOR SLICE BLOCK DIAGRAM
[
U-‘ —
i
DBODDOBDD
p DESTINATION! ~u ~
CoNTROL | P TION)
-
Lok - --.M‘.__"'_-
WoaTA N
:.:‘.‘;" a AnOnT S o |
A ' <
® e W ADOAE LMD T BEOSTERS o—
AT ’ ——J . - » Ao °
DATA DATA
our
e -
ot . -——J
DATA N | Syt |
10 A . ’ L
AU DATA SOUmCH
MuscTon
" s
L y
. .) - ¢
cannY ™ Ca b -
SIETON - G
i
} = ovvenice
’) - -
b — ———
g o:mnu"a--o:-
Uuuo-' PR

Cf;l IDI | DR JEFF
SOFTWARE

CALIFORNIA INDIE APPDEVELOPER

R 2901 8 ALUO PS © Jffbrabman

CO I\/I P 1 2 2 2016-2023
- — Am2900 —
MICRO CODE | "G OVRCE MICRO CODE A
Octal Octal | Function
Mnemonie | Iz | 1 | bo | code R s Mnemonic | 15 | L4 | b3 | code
AQ Ll L e 0 A Q ADD KRN 0 RPus S R+S
A8 L| L] M 1 A [SUBR LiL]w 1 S Minws R $-R
20 LML 2 0 Q suBs LimlL 2 R Misws S R-S
b L MW | H 3 0 [0 OR LiMH 3 RORS RV S
ZA TR R a 0 A AND HiL|L 4 RAND S RAS
DA H| LN 3 0 ~ NOTRS ML~ [3 RAND S RAS
DQ H| MWL 6 D Q EXOR HiH|L 6 REXORS RYS
V4 H |l MWl H 7 D 0 EXNOR HIH|H 7 REXNORS | AyS
Figure 2. ALU Source Operand Control, Figure 3. ALU Function Control.
RAM Q-REG. RAM Q
MICRO CODE FUNCTION FUNCTION Y SHIFTER SHIFTER
Mnemonic | lg | ¥ | lg | ocge | Shift | Load | Shift | Losd OUTPUT | pam, | RAM; | 0o | aQ
QREG T 0 NONE | NONE | F+Q | F X x X x
NOP L | L | H 1 X NONE X NONE F x x x| x
RAMA L W] 2 NONE | F+8 X NONE A X X x X
RAMF L M| H 3 NONE | F=+8 X NONE F x | x x x
O RAMGO | H | L | L K DOWN |F2-+8 | DOWN |Q2+Q | F Fo Ny | Qo | ™
| rRAMD kM L | H [3 DOWN |F2-+8 X NONE F | Fo ﬁ N | QG * X
Al RAaMQU | H | H | L 6 uP -8 uP 20~Q e INg Fy } Ny 0
RAMU H | H|H 7 upP 8 X T NONE F INg Fy X 0,
W ToN'T USE 0 UDISABLE FEN & CBNABLE ¥
X = Don't care, Electrically, the shift pin is a TTL input internally connected 10 a three-state output which is in the high-img edance state
B «~ Register Addressed by B inputs.
UP is toward MSB, DOWN is toward LSB. Eiea 4 Al 1) Dastinatinn Cantenld

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

gran\ DR JEFF
lock Di EJsorrware
2901 Block Diagram i

Am2900 —

BLOCK DIAGRAM
:“g‘ ., a M . "‘ 2 . et o e : = *
-+
| — sastow (P— STARY
'f‘ (s ADORE B8 aocs
OF wemad & LATON wiew tle—or J L Y “IA.
-\ o 41
x| - l . ..:oumcur' A— ._,v__ o, MonTen
T S I —— Tl =T
o ' = : > . b
(=g wux gy ; ADURL o AS Al & » DG
P | WACROMIOGR AM i *
a~ » . ‘f‘ | S10Mt ol™ .J § 5 ‘::“ i
:‘m .MT.. / S meown'| 2 } ¢| owr
o PN, R — , (O RO | 1l b
. 1l v 1
Core Oy 11131
p A -t | 1] ’ l 1
{ Hil »
s N oy — oo J [| DATA
a wrren - o S == 2 ADOW B8 | i ! ot
@10, . {4 4L
4 =y O OTw s
f;'i by | @ =] mecitren VeCLs
1
mw I c‘r) RN .) I N mo“
m'!’w sy * o) Figure 15. Miaoprogrmod Architecture Around Am2901’s,
;l,h |]
= : “ System Block Diagram
(=3 - =
i -_—— .
Lo o
o —_————=
Notes: 1. DAg.3 is input only on Am2303, but is VO port on Am29203.
2. On Am2903, zero logic is connected 1o Y, after the OE y buffer.
wnaso |

CSUN

@' DR JEFF
E SOFTWARE
CALIFORNIA INDIEAPPDEVELOPER

16-bit CPU =4x 2901

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016-2023
COMP122
Am2900 —
Do-3 04y O.n Ou.w
Qg 10— 0 0 o i . _ o e b ¢
e L S wo
RAMg 110] Ram, —d s - ~— e o o p— e
v ’ ’ ’
CARRY N (N AnI' Coa b ¢, =i c...»p—— q M .- —y G, Amiem c...‘r—.c
ovh b ove |— ove b oval——v
/‘ ap—- L = 2 HE—~
™ r- (=) = -0 2z
Yo-a 1 Ya.r Yeom Yz "
“or

- A0 v“

AL 2 1l

Py MG 716 7o

op—
(- A)
rp—
c"- g' g"
J 1
MER 018

Figure 17. Four Am2901s in a 16-Bit CPU Using the Am2902 for Carry Lookahead.

CSUN

ssa) DR JEFF
Q SOFTWARE

INDIE APPDEVELOPER

Am2901/3 4-bit MPU S
COMP122 Bit-slice 1975-85 —
A JPEUN - WS AMD AM2903ADC

AR

UT 2" ¥ 1SN WY, S SHIRDM E;ﬂ@

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

2901 Chip

; DR JEFF
254 soFTwaRE

© Jeff Drobman
2016-2023

Am2900 —

METALLIZATION AND PAD LAYOUT

— —)
n
MN D - —
N 2 j »
LI ———— Y
AD 4 m— ———
9 -] — 54
—_— :
n
”
1 7 — - n
[VT VT —
RANG @~
Vo© W v B »
OND ——t -
Fed 1 =
I 12w K n
I 13 . 28
R W
CF A5
Oy !.————] ' | l»; o
B 17— | c—
8 19— ———— 23
2w
03 20 ——
G
O3 2 =

Am2901B
DIE SIZE 0.117" X 0.128"

CONNECTION DIAGRAM
Top View

» F»
L
-

ced
. ann

=
»
£ .
. -

¥

sinininininininininininininini

H

-«

L -]
L]

o reé
888

o

crr?

uuuluuuuuuuuuuuuuuuy
i

-
vt . o - « -
cEpeNg22ZN
. »
-

e ¥ e p

YER2PRNENIBEENERSES

FFPFE

Figure 10.

3
§

Note: Pin 1 is mark

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

2901-A-B Die

AN, »

e T

S & bnl. »nl
WFIL

—

DIE SIZE 0.167" X 0.198"

Spoed AB - G,P 80ns

SMALLER DIE SIZES MAKE FASTER PARTS
Am2901A

“am,
savy

(o~ -
LS
™

DIE SIZE 0.132" X 0.149"
Speed AB — G.P 65ns

T

2377

DIE SIZE 0.117" X 0.128"
Speed AB - G.P s0ns

Am2901B

Am2900 —

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

Errtaw?

CSUN &R sorrware
ChTomy Com pu ter Or g: |ICU L ot
RRRRRRRRRR []

2016-2023
COMP122

RISC

Pipelines

9| DR JEFF

CSUN CISC VS RISC. &%) soFTwARE
AAAAAAAAAAAA . © Jeff Drobman

2016-2023

COMP122 Complex/Reduced Instruction Set Architecture

¢ Microprocessor History

» 1971-85: CISC (8/16-bit)
< Intel 14004 (4-bit)
< Intel i8008 (8-bit) = i8080 - i8085, Z80 = i8086 (16-bit) > “x86”
<> Motorola 6800 (8-bit) 2 6502 = 68000 (16-bit)
<> IBM PC used i8088 (8/16-bit) in 1981 = i80n86 (“x86”) = Pentiums

» 1985-2000: RISC — (32/64-bit)
<> SPARC* (UC Berkeley—=> Sun/Oracle)
<> MIPS* (Stanford)
<> PowerPC (Motorola/IBM)
<> AMD 29K
<> Intel 1960
< ARM*

*still exist

- JEFF
CSUN R I S C . =) SOFTWARE
CALIFORNIA [] INDIEAPPDEVELOPER

ELOPER
STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE

COMP122 Reduced Instruction Set Architecture

¢ Key Architecture of RISC
» Reduced ISA: small set of instructions
» Fast execution: single cycle only

» Reduced impact of memory
<> No microprogram (key change)

= |nstructions scale to vertical microinstructions (single-cycle)
= eliminates ~30% chip area

<> LOAD-STORE (only) memory references
<> Full general register sets
<> Cache memory
= On-chip
= Multi-level
= Harvard architecture — separate | and D
» Pipelining
<~ 4 or 5 stages
<> Interlocks

= Hardware (SPARC, 29K)
= Software (MIPS): compiler manages pipeline scheduling

2016-2023

CSUN . = s@?@ige
CISC Instruction Cycle

2016-2023
COMP122

2]
$2
SYNC
So /
S, L/ /
S; / \ /
T T T2 WAIT T3 STOPPED T4 TS
HIGHER
LOWER 6-BITS EXTERNAL | INSTRUCTION HALT
CPU 8-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF
INTERRUPTED | ADDRESS TWO BITS NOT READY FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL (OPTIONAL) | DATA OUT CPU
ouT (8-BITS)
= TYPICAL PROCESSOR CYCLE -

INCLUDES T1, T2, T3, T4, TS

MCS-8 BASIC INSTRUCTION CYCLE

CSUN] 83 soFrware
CISC State Dia gram ©.ef robman
2016-2023

COMP122 — ICU state machine MCS-8 -
MCS-8 BASIC SYSTEM g

INTERRUPT

CPU STATE TRANSITION DIAGRAM

CSUN : B soFrware
Instruction Cycles o i

COMP122

Clock Sync

Clocks < Cycles
clock speed is normally the frequency that a CPU operates at, and {
inversely, defines the clock period or cycle time. cLock

CPI (clocks per instruction) is the average number of cycles it takes to
execute an instruction — per a given instruction stream.

HIGH-10-LOW LOW-10-HIGH
Set-up | Hold Set-up | Hold

Set-up and Hold Times Relative to Clock (CP) Input.

CP: ' f

Set-up Time Hold Time Set-up Time | Hold Time
Before H— L After H—- L BdonL-HlAth-oH

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Cycle Times

(=)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

STATUS STATSS

COMP122
Am2900 ==
MINIMUM CYCLE TIME CALCULATIONS FOR 16-BIT SYSTEMS
Speeds used in calculations for parts other than Am29018B are
representative for available MSI parts.
r O e
—
@Iccmlhl
® : ® av . . ® .
AnI901A 0:: ®
444 ®
L An3e02 ..:..,:“
Cace

CSUN . B sorrware
ChTomy CPU C h Ip C | OC k Source L ot

2016-2023
COMP122

2-phase clock

SYNC

PLL will multiply
300 MHz xtal freq

{D} > Clocks (multi-phase) | UP to 4 GHz
XO " HIGH-0-LOW LOW-t0-HIGH
Set-up | Hold Set-up | Hold

Voltage
Phase Loop Controlled

Comparator Filter Oscillator CPU Chi
vl D — RN\ fveo 7, p

A

Simplest analog phase locked loop &7
I

f FF
CSUN lock G 24 soFrware
I Clock Gen S

—= e

Setup | Hold | Setup | Hold PLL= Phase Locked Loop

Clock Tree : CIK[1-4]

a

Clk[1-4]
Voltage
) Phase Loop Controlled
Reference ., Flip-Flops Comparator Filter Oscillator
— 1 Ref - and
ClOCk PLL Clock Latches ¢ vco
l" Feedback istribution__, Vi’ I s Vo
Simplest analog phase locked loop &
D Q
DFF TN
o four gl AL
HCHOUY6A
) PAN210

An example digital divider (by 4) for &J Freq divider (by 4)
use in the feedback path of a multiplying
PLL

ON Semiconductor HC4046A &1

DR JEFF

CSUN E)sorrware
e Clock Source: Xtal Osc & e
COMP122

Crystal oscillator

Cluster of natural quartz crystals &3

A synthetic quartz crystal grown by &7
the hydrothermal synthesis, about
19 cm long and weighing about 127 g

_— &
Inside a modern DIP package quartz &J Intemals of a quartz crystal.

crystal oscillator module.lt includes a
ceramic PCB base, oscillator, divider
chip (/8), bypass capacitor, and an AT
cut crystal.

CSUN &)< o5 ke
e Clock Source: Xtal Osc & e

2016-2023
COMP122

Crystal oscillator types and their abbreviations:

« ATCXO — Analog temperature controlled crystal oscillator
« CDXO — Calibrated dual crystal oscillator

DTCXO — Digital temperature compensated crystal oscillator
EMXO — Evacuated miniature crystal oscillator

GPSDO — Global positioning system disciplined oscillator

« MCXO — Microcomputer-compensated crystal oscillator

« OCVCXO — oven-controlled voltage-controlled crystal oscillator

¢« OCXO — Oven-controlled crystal oscillator

« RbXO — Rubidium crystal oscillators (RbXO), a crystal oscillator (can be an
save power

« TCVCXO — Temperature-compensated voltage-controlled crystal oscillator

« TCXO — Temperature-compensated crystal oscillator

« TMXO - Tactical miniature crystal oscillator!®7]

« TSXO — Temperature-sensing crystal oscillator, an adaptation of the TCXO

« VCTCXO — Voltage-controlled temperature-compensated crystal oscillator

« VCXO — Voltage-controlled crystal oscillator

CSUN : : Bl sorrware
CISC/RISC Pipelines

COMP122
Instructions RISC Pipeline -
@ R3000/SPARC/i960/29K/PPC
4- | I
. . 8 cycles per | fetch One cycle 1 cycle per |
Non pipelined 18008/m6800
I+D fetch|| Execute | I+D fetch || Execute I-dec/Op-fetch
One cycle ' ALU execution
Hardware Interlock
. or
2-4 cycles per | i8088/M68000 Write-back 1 pelay Slot (NOP)
. . (for LOAD, BR)
CISC Pipeline [25tage’ Data
|

- v

I14+D Fetch Exequte
]]

1
I1+D fetch Exedute
I

I14+D fetch Exegute
] I

v

One cycle

CSUN . . D) sorrware
ChTomy - MIPS RISC Pj pel ine L ot

2016-2023
COMP122 / e

Each stage takes only 1/5 of instruction cycle: clock F => 5x

queue finished
, S = _ , S , S , S
"Hb' Q H . . ! . .‘v i . ." : ‘ .’l é ¥ . .’u

e | somw | Wesnjwr | e | an

< Setup =2 <Work—> < Finish =2
__F__| ID/OF _ | ws
Upper Lower

Execution Units
(EU’s)
R3<R1+R2
R format Address Gen
= Base + offset

| format

DR JEFF
SOFTWARE

e RISC Pipelines: Stages/ States i

2016-2023
- Stages - States
Instructions
§ ER &

| fetch

I-dec/Op-fetch

ALU execution Hardware Interlock
or
LD/BR: 1 cycle Write-back Delay Slot (NOP)

(for LOAD, BR)

Data

D Context switch
Pipeline flush: stages 1-3

Instruction State Diagram < Exceptions/Traps

** Interrupts
s System Calls

DR JEFF

CSUN . . 25| soFTwaRE
mCuroNs MIP S Pi p e | ine d O r g E o firid

2016-2023
MP122 o
O MIPS _ Wiki ——
Instruction Fetch Ins&g&?g&? Eeeti?‘de A dgz(eesCSUtCeal . Me cess Write Back
|F ID EX MEM WB
Next PC
— . o
Next SEQ PC Next SEQ PC
RS1
| Branch
222 Register taken
| Fie
o z
. § Q [2 . E
= m z ~
i - . : 3
A . Imm
A A ; A
WB Data

MIPS, showing the five stages (instruction fetch, instruction decode, execute, memory access and write back).

CSUN o, o . = Isgli-}TJvI\E/Z;E
Additional Material g

2016 2023
COMP122

JTAG

IEEE Joint Test Action Group

Boundary Scan

aran DR JEFF
CSUN 24| soFTware
INDIEAPPDEVELOPER
pmShronNs JTA(5 Jueesenaiionm
NORTHRIDGE 2016‘2023

COMP122 Wikipedia —

Boundary scan

From Wikipedia, the free encyclopedia
(Redirected from JTAG boundary scan)

Boundary scan is a method for testing interconnects (wire lines) on printed circuit boards or sub-blocks inside an
integrated circuit. Boundary scan is also widely used as a debugging method to watch integrated circuit pin states,
measure voltage, or analyze sub-blocks inside an integrated circuit.

The Joint Test Action Group (JTAG) developed a specification for boundary scan testing that was standardized in 1990 as
the IEEE Std. 1149.1-1990. In 1994, a supplement that contains a description of the Boundary Scan Description Language
(BSDL) was added which describes the boundary-scan logic content of IEEE Std 1149.1 compliant devices. Since then,
this standard has been adopted by electronic device companies all over the world. Boundary scan is now mostly
synonymous with JTAG.['I2]

Debugging |edi)

The boundary scan architecture also provides functionality which helps developers and engineers during development stages of an embedded system. A JTAG
Test Access Port (TAP) can be turned into a low-speed logic analyzer.

History | edit]

James B. Angell at Stanford University proposed serial testing.[!

IBM developed level-sensitive scan design (LSSD).[56]

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

JTAG

¥m DR JEFF
25| soFTwaRE

© Jeff Drobman
2016-2023

T™MS

TCK

TAP-Controller

Shift IR / Shift DR

IN 1:>| TDI

Instruction Register

v

\ Instruction Decoder

Data Registe
Selec

-

Bypass Register

Wikipedia —

——> TDO I:> ouT

IDCODE Register

... Register

Boundary Scan Register

)/

¢

¢

{

10

0| « «

10

a9 DR JEFF
CSUN 24| soFTware
. JTAG O e Srobran
NORTHRIDGE

2016-2023
COMP122 Wikipedia —

On-chip infrastructure |edit]

To provide the boundary scan capability, IC vendors add additional logic to each of their devices, including scan cells for each of the external traces. These cells
are then connected together to form the external boundary scan shift register (BSR), and combined with JTAG Test Access Port (TAP) controller support
comprising four (or sometimes more) additional pins plus control circuitry.

Some TAP controllers support scan chains between on-chip logical design blocks, with JTAG instructions which operate on those internal scan chains instead of
the BSR. This can allow those integrated components to be tested as if they were separate chips on a board. On-chip debugging solutions are heavy users of such
internal scan chains.

These designs are part of most Verilog or VHDL libraries. Overhead for this additional logic is minimal, and generally is well worth the price to enable efficient
testing at the board level.

For normal operation, the added boundary scan latch cells are set so that they have no effect on the circuit, and are therefore effectively invisible. However, when
the circuit is set into a test mode, the latches enable a data stream to be shifted from one latch into the next. Once a complete data word has been shifted into the
circuit under test, it can be latched into place so it drives external signals. Shifting the word also generally returns the input values from the signals configured as
inputs.

Test mechanism | edit)

As the cells can be used to force data into the board, they can set up test conditions. The relevant states can then be fed back into the test system by clocking the
data word back so that it can be analyzed.

By adopting this technique, it is possible for a test system to gain test access to a board. As most of today's boards are very densely populated with components
and tracks, it is very difficult for test systems to physically access the relevant areas of the board to enable them to test the board. Boundary scan makes access
possible without always needing physical probes.

In modern chip and board design, Design For Test is a significant issue, and one common design artifact is a set of boundary scan test vectors, possibly delivered
in Serial Vector Format (SVF) or a similar interchange format.

(@GS DR JEFF
CSUN 85 soFrware
. JTAG O et Brobman
NORTHRIDGE

2016-2023
COMP122 Wikipedia —

JTAG test operations | edit]

Devices communicate to the world via a set of input and output pins. By themselves, these pins provide limited visibility into the workings of the device. However,
devices that support boundary scan contain a shift-register cell for each signal pin of the device. These registers are connected in a dedicated path around the
device's boundary (hence the name). The path creates a virtual access capability that circumvents the normal inputs and provides direct control of the device and
detailed visibility at its outputs.®] The contents of the boundary scan are usually described by the manufacturer using a part-specific BSDL file.

Among other things, a BSDL file will describe each digital signal exposed through pin or ball (depending on the chip packaging) exposed in the boundary scan, as
part of its definition of the Boundary Scan Register (BSR). A description for two balls might look like this:

"541 (bc_1, %, control, 1)," &
"542 (bc_1, GPIO51_ATACS1, output3, X, 541, ke Z)," &
"543 (bc_1, GPIO51_ATACS1, input, X)," &
"544 (bc_1, %, control, 1)," &
"545 (bc_1, GPIO50_ATACS@, output3, X 544, i ke 745 bt

"546 (bc_1, GPIOS50_ATACSO, input, X)," &

That shows two balls on a mid-size chip (the boundary scan includes about 620 such lines, in a 361-ball BGA package), each of which has three components in the
BSR: a control configuring the ball (as input, output, what drive level, pullups, pulldowns, and so on); one type of output signal; and one type of input signal.

There are JTAG instructions to SAMPLE the data in that boundary scan register, or PRELOAD it with values.

During testing, 1/0 signals enter and leave the chip through the boundary-scan cells. Testing involves a number of test vectors, each of which drives some signals
and then verifies that the responses are as expected. The boundary-scan cells can be configured to support external testing for interconnection between chips
(EXTEST instruction) or internal testing for logic within the chip (INTEST instruction).

CCS,,“,,UORNIMJ Quora .JT AG & S,‘NE:EIJDE"?EEEE
STATE UNIVERSIT) © Jeff Drobman

Q Drazen Zoric - Follow 2016-2023
COMP122

Lives in Cork, Ireland - (

Jeff Drobman - Just now

‘ very good, but you did not mention that the purpose of JTAG is to provide a test
port. select chip internal bits are in a test chain which are serially shifted infout of the
chip via the 4-pin JTAG port.

CSUN 28 sorrwar
S, QUOTQA J T AG B AR
STATE UNIVERSIT) © Jeff Drobman
NORTHRIDGE Drazen Zoric - Follow 2016-2023
COM P122 e Lives in Cork. Ireland - (
JTAG is based on state-machine implemented in hardware and debugger for any operation
must walk among states. Here one example:

TMS =1 '
test logic reset

P s -0
TMS =0 '
run test idle
TMS =1

select DR scan

TMS =1

select IR scan

TMS =1

capture DR capture IR

shift IR

™S =0

TMS =1

exit1IR

exit 2 IR

exit 2 DR

TMS =0 TMS =0

update DR
TMS = T™MS =0

update IR

TMS =0

Jeff Drobman - Just now

‘ very good, but you did not mention that the purpose of JTAG is to provide a test
port. select chip internal bits are in a test chain which are serially shifted infout of the
chip via the 4-pin JTAG port.

. DR JEFF
| - . 25| soFTwaRE
Additional Material g

2016-2023
COMP122

@3 DR JEFF
SOFTWARE

CSUN

INDIE APPDEVELOPER
i JEDEC (EIA O Erabman
NORTHRIDGE 2016‘2023

Jedec.

COMP122

Global Standards for the Microelectronics Industry

STANDARDS & DOCUMENTS COMMITTEES NEWS EVENTS & MEETINGS

GRAPHICS DOUBLE DATA RATE 6 (GDDR6) SGRAM
STANDARD

JESD250B

Published: Nov 2018

This document defines the Graphics Double Data Rate 6 (GDDR6) Synchronous Graphics Random
Access Memory (SGRAM) specification, including features, functionality, package, and pin
assignments. The purpose of this Specification is to define the minimum set of requirements for
8 Gb through 16 Gb x16 dual channel GDDR6 SGRAM devices. System designs based on the
required aspects of this standard will be supported by all GDDR6 SGRAM vendors providing
compatible devices. Some aspects of the GDDR6 standard such as AC timings and capacitance
values were not standardized. Some features are optional and therefore may vary among
vendors. In all cases, vendor data sheets should be consulted for specifics. This document was
created based on some aspects of the GDDR5 Standard (JESD212). Item 1836.99D.

: Y DR JEFF
CSUN 25| soFTwWARE
. _] FDE((E | A) oesrronmomn
NORTHRIDGE 2016—2023

COMP122

JEDEC History

In 1924, the Radio Manufacturers Association (which later became the
Electronic Industries Association) was established. In 1944, the Radio Timeline
Manufacturers Association and the National Electronic Manufacturers

e Pre-1960s
Association established the Joint Electron Tube Engineering Council e 1960s
(JETEC), which was responsible for assigning and coordinating type e 1970s
numbers of electron tubes. As the radio industry expanded into the e 1980s
emerging field of electronics, various divisions of the EIA, including e 1990s
JETEC, began to function as semi-independent membership groups. e 2000s
The Council expanded its scope to include solid state devices, and by e 2010s

1958 the organization was renamed the Joint Electron Device
Engineering Council (JEDEC) - one council for tubes and one for

semiconductors.

JEDEC initially functioned within the engineering department of EIA where its primary activity
was to develop and assign part numbers to devices. Over the next 50 years, JEDEC’s work
expanded into developing test methods and product standards that proved vital to the
development of the semiconductor industry. Among the landmark standards that have come

from JEDEC committees are:

CSUN

@3 DR JEFF
SOFTWARE

2016-2023

INDIE APPDEVELOPER
i JEDEC (EIA O Erabman
NORTHRIDGE
—D — ey
J : : b@

COMP122

Global Standards for the Microelectronics Industry

STANDARDS & DOCUMENTS COMMITTEES NEWS EVENTS & MEETINGS

Why JEDEC Standards Matter

JEDEC committees develop open standards, which are the basic building blocks of the digital
economy and form the bedrock on which healthy, high-volume markets are built. For example,
JEDEC semiconductor memory standards - from dynamic RAM chips and memory modules to
DDR synchronous DRAM and flash components - have enabled huge markets in PCs, servers,
digital cameras, MP3 players, smart phones, automotive and HDTV, to name just a few.

Standards enable innovation, serving to commoditize components by lowering their prices while
maintaining quality and reliability. This leads suppliers to compete more vigorously on
innovative features and gives buyers more variety and a broader selection. The end result is a
much larger market than proprietary products could foster, which means more potential sales
and revenue.

Standards allow companies to invest more strategically in R&D rather than inventing everything
from scratch. Once common form factors are set, companies can base their designs on standards
and focus on innovation.

