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¢ Logic = slide 3

¢ Transistors to Gates = slide 13

** Arithmetic = slide 19

** AMD Catalog of Analog (Linear) = slide 31
¢ Digtial MSI: ALU - slide 35

¢ Digtial MSI: PIC, Mux/Dec > slide 40
¢ Logic Minimize = slide 54

*** Memory (RAM) - slide 62

¢ Sequential Logic = slide 67

¢ Logic: Multi/Div = slide 78

¢ Logic Timing (AC) = slide 97

s State Machines (FSM) = slide 103

¢ Computer Logic Boards =2 slide 105
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Relational Operators Logical Operators
< less than && short circuit AND
<= less than or equal to |l short circuit OR
> greater than ! NOT
>= greater than or equal to A exclusive OR
== equal to
= not equal
any type = boolean boolean = boolean

if (x<=y+3) && x>2 || FLAG ==true
** AND has 2 uses:

1) Mask (1 lets in)
2) Filter (O keeps out)
¢ XOR has 2 uses:
1) Bit complement/toggle
2) Bit equal

_FLAG ==true <& FLAG
_FLAG ==false < | FLAG
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i allaboutcircuits.com

{}circuits

Ch apters |n thl S Ch. 9 - Combinational Logic Functions
VOI ume Ch. 10 - Multivibrators

Ch. 11 - Sequential Circuits
Ch. 1 - Numeration Systems

Ch. 12 - Shift Registers
Ch. 2 - Binary Arithmetic

Ch. 13 - Digital-Analog Conversion
Ch. 3 - Logic Gates

Ch. 14 - Digital Communication
Ch. 4 - Switches

Ch. 15 - Digital Storage (Memory)
Ch. 5 - Electromechanical Relays
Ch. 6 - Ladder Logic

Ch. 7 - Boolean Algebra

Ch. 8 - Karnaugh Mapping  » K-maps



: : B3 sorrware
Logic Comic Book g

2016-2023
COMP122

Manga Guide —

https://nostarch.com/download/MangaGuidetoMicroprocessors_sample Chapter2.pdf

e m e A e e

14| 13| [12] |11] [10

INPUT B
1N By
P 1 2 3 4 5 6 g |
AR
’/’[“‘3’%} \ T 7.
| i, M THIS 15 A LABELED DIAGRAM
— OF THE INSIDE OF THIS CHIP. PINS



CSUN B4 soFrware

liiirom Trut h Ta b | es e
NORTHRIDGE 2016'2023
COMP122
OR AND
N BT

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 1 1 1 1

AN
INclusive
XOR

0 0 0 1) Mask (1 lets in)
pass :

5 " " 2) Filter (O keeps out)

+* XOR has 2 uses:

flip 1 0 1 1) Bit complement/toggle

1 1 0 2) Bit equal

11 o

EXclusive
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Appendix G p. 751

Bitwise AND
Bitwise OR

Bitwise XOR

1’s complement
Left shift (*2")
Right shift, arith SE
Right shift, logical

11101 & 00111
00010 | 11000
00111711111
00111100

10101010<< 2
10101011 >>2
10101011 >>2

Integer types only

NEW

00101
11010
11000
11000011
10101000
11101010
00101010

bit flip

*zn
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OTHER BASIC GATES (NAND, NOR, AND XOR) |
OKAY, LET'S TAKE A NAND NOR XOR

LOOK AT NAND, NOR,

AND XOR* GATES NEXT. _—})_ :)0_ _.\D_
— —

\___/I
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{ NAND GATE (LOGIC INTERSECTION COMPLEMENT GATE) }
SYMBOL TRUTH TABLE VENN DIAGRAM
A B Z
B 0 T T
INPUT OUTPUT [ 0 T
1 1 0
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DE MORGAN'S THEOREM
A B = A+B
A+B = A-B
&, / (H
AND é_( MOR@AN"5 ;__:
OR < AND

)
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DeMorgan’s Law

(-) g )
AND (—( MOR@AN’5 )_) OR

OR (—4 LAWS 3__) AND
- %

Manga Guide —

That’s it! It also means that we can use De Morgan’s laws to show our circuits in different
ways. Using this technique, it's easy to simplify schematics when necessary.

T NAND D

BOTH OF THESE ARE NAND GATES!

4 -

BOTH OF THESE ARE NOR GATES!

NOR
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If computers are really just many (billions) of on/off switches,
how do they perform operations?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
&7 present)

Answered just now

via a multi-level hierarchy of digital logic. transistors are combined to form logic “gates”
of simple logic functions (AND, OR, NOT). the gates are combined to form more
complex functions such as decoders, ALUs, and multiplexers. these functional blocks
are then combined further into ever more complex logic blocks such as EU’s and then
CPU cores. also, random logic implements the ICU as an FSM which includes pipelining.
besides logic, computers have “storage” in the form of registers and memory (at up to 4
levels) via DRAM and SRAM cells formed from transistors (and a capacitor).
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Device/Xtor
: Inverter/Gates
Physical
Level
Vce (Vdd)
Complementary s
CMOS e Totem-pole
INVERTER N — OUT = NOT IN
0=OFF
1=0ON

Gnd (Vss)
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€O MOSFET
v
e = vdd i
g ’ __,E’ —d[ pul
—F —F —
a _H g ] I
1 — _1 - PUSh
NMOS PMOS Vv ﬂ
NOT gate NOT gate SS
NMOS inverter PMOS inverter Static CMOS inverter
CMOS
N OT P/N Totem pole
Push-Pull

—Do—
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AND OR

SERIES PARALLEL

OouT
A&B

e OUT
A|B
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Vdd
i
A— +—Q
i
Vss

Static CMOS inverter. Vgq and Vgg
are standing for drain and source
respectively.

NoT

—>o—

MOSFET

&3

2016-2023

vdd Vdd

A—4 8—4 P PARALLEL

NEGATIVE OR
Qout
A -
N SERIES
B POSITIVE AND
Vss

NAND gate in CMOS logic &J

NAND

— r-
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add $t1,5$t2,5t3
add.d $f2,$f4,$f6
add.s $f0,$f1,$f3
addi $t1,5$t2,-100
addiu $t1,%$t2,-100
addu $t1,5$t2,5t3
and $t1,5$t2,$t3
andi $t1,%$t2,100

Addition
Floating
Floating
Addition
Addition
Addition

2016-2023
MARS

with overflow : set $tl1 to ($t2 plus $t3)

point addition double precision : Set $f2 to double-precision floating p
point addition single precision : Set $f@ to single-precision floating p
immediate with overflow : set $tl to ($t2 plus signed 16-bit immediate)
immediate unsigned without overflow : set $tl to ($t2 plus signed 16-bit
unsigned without overflow : set $tl to ($t2 plus $t3), no overflow

Bitwise AND : Set $tl1 to bitwise AND of $t2 and $t3
Bitwise AND immediate : Set $tl1l to bitwise AND of $t2 and zero-extended 16-bit im
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THREE
INPUTS

INPUT

INPUT ,)
[
L

>—

OUTPUT (THE VALUE

HALF ADDER

/

OUTPUT
C

/s

HALF ADDER

Cout

S

HALF ADDER

Cout

OF A + B)

(CARRY)

Cin

FULL ADDER

T >
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* Full Adder in Digital Logic ©6 GeeksforGeeks—

Full Adder

Sum

C -Out

I I S el el fel Na] TS

HIFIO|IO(FR|[FIO|O

~lo|lr|lo|l~|o|~|oll

RIOO|R|O|F|F|O

HH!—‘OI—‘OOOO
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Implementation of Full Adder using Half Adders
2 Half Adders and a OR gate is required to implement a Full Adder.

C propagate A+B

C-Out

Half - Adder

C generate A*B

Half - Adder
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Therefore COUT =AB+ C-IN (AEX - OR B)

T

Logical Expression for SUM:
=A'B'C-IN+A'BC-IN'+AB'C-IN'+ABC-IN
=C-IN(A'B'+AB) +C-IN'(A'B+AB')
=C-IN XOR (AXOR B)

| /.

C propagate A+B
L

- Out

— Cgenerate A*B

) Implementation of Full Adder using NAND gates:
FullAdder logic:

XOR in NAND

’ .‘\
D D D
» ] B~

— Cout
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THE CARRIES ARE BEING PROPAGATED
A1 Bi Az B2 Az B3
A S A S A S A S
B Cout B Cout B Cout B Cout
HALF ADDER Cin Cin Cin
FULL ADDER FULL ADDER FULL ADDER
W W W v oWV
So Sl Sz S3 Cout
RIPPLE CARRY ADDER
C 0
A > > out
B Parallel Carry — Coutl
= Generator " Cout
S " Cout®
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The 8-Bit Adder Principle

The 8-bit adder adds the numbers digit by digit, as can be seen in the schematic diagram below. In this
example, the integers 170 and 51 represent input a and b, respectively, and the resulting output is the surr
221. The first adder does not have any carry-in, and so it is represented by a half adder (HA) instead of a

full adder (FA).
| 1 0 1 0 1 0 1 0 1 170
, T T T mm——m == }- —mmm— |- R e m——--}- - '_'_'_'_'_'_'_'_' -~
| 0 0 1 1 0 0 1 1 | 51
FA [ FA d FA |/ FA | FA [d FA [ FA I HA
| 1| |1 0 1 1 1 0 1 1 221

______________________________________________________________

. —
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S

Ainvert

Binvert

Operation

Carryin

LA

+ Result

» Set

- QOverflow
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Figure 8.5.15: A Verilog behavioral definition of a MIPS ALU (COD Figure
B.5.15).

module MIPSALU (ALUctl, A, B, ALUOut, Zero);
input [3:0] ALUctl;
input [31:0] A,B;
output reg [31:0] ALUOQut;
output Zero;

assign Zero = (ALUQut==0); //Zero is true if ALUOut is O
always @(ALUctl, A, B) begin //reevaluate if these change
case (AlLUctl)

0: ALUQut <= A & B;
1: ALUOut <= A | B;
2: ALUOQut <= A + B;
6: ALUQut <= A - B;
7: ALUQut <=A<B ?1 : 0;

12: ALUOut <= ~(A | B); // result is nor
default: ALUOut <= 0;
endcase
end
endmodule
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AMD Procucts (1971)

1 Analog

“  Op Amps

*« Voltage Regulators
0 Packages

« DIP

* Others
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Electronic Device Cos.

Nationwide Distributor for the world's finest lines of quality electronic components!

HAMILTON

ELECTRO SALES

10912 W. Washington Blvd. « Culver City, California 90230

ADVANCED MICRO DEVICES ...... Integrated Circuits
BOURNS™ . i s Potentiometers
BURROUGHS ............ Nixie Tubes, Digital Displays
FAIRCHILD ...... Semiconductors, Integrated Circuits,

Microwave & Opto Devices

GENERAL ELECTRIC ....Semiconductors, Capacitors,
Meters, Opto Devices, Relays,

Volt Pacs
I ELSN S e Integrated Circuits
KEMET ... . ... Solid Tantalum, Ceramic Capacitors
CITRONDE £ -1 oy, Wi o F0 aia Opto Devices
MEPCO/ELECTRA .......... Potentiometers, Resistors
MONSERNTO " ool oo Opto Devices
MOTOROLA . ..... Semiconductors, Integrated Circuits,

Opto Devices

NATIONAL SEMICONDUCTOR ....... Semiconductors,
Integrated Circuits, Opto Devices

POTTER & BRUMFIELD — WOOD .. .Relays, Switches,
Circuit Breakers

RCA. hid v 7 b Semiconductors, Integrated Circuits,

; Opto Devices
SIGNETIES .. - ." . . . Integrated Circuits
SILICONIX ........ Semiconductors, Integrated Circuits

WESTINGHOUSE .................... Semiconductors

(=)

1972 ——
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AMD Analog (Linear)

 Ampiitiers

LINEAR CIRCUITS

78T/ 747C
cual T41/741C)

&1/ 741C

I

General Purpose High Speed Low Power
Uncompensated (10V/ usec) 108/208/308
Dual 715/715C 1

Amtﬁ(n b o 08A/208A/308A

(dual 101A) 110/210/310

748/748C

101A/201A/301A

108/208/308
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Voltage
Regulators

Positive Negative Switching High Voltage
105/205/305 723/723C 723/723C

(Floating)

723/723C 723/723C

105/205/305

The monolithic regulator is considered nal-pass transistors when power out is Precision regulation ¢
useful for local-board regulation, Important, Thelr primary advantage Is when external referer
amplifier supplies, and other applications se of use and economic regulation for are used.
where the size and economics are of ications not requit e S

advantage. Monolithic regulators should
be considered In ag with e
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1 Logic Product Lines
« 54/7400
«  F9300/Am9300

1 ALU slice (4-bii)

“  54/74181
“ Am9340
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Texas Instruments

¢ Fairchild 9300 series : :
. ¢ 54/7400 Series | > 542 Miltemp
** Signetics > 74 = Com’l temp

+*National J 54/74SN181
** Motorola
** Texas Instruments

> 4-bit ALU slice

Ripple Carry

P
«

Cout™

|
16-bit ALU

Am2505 2x4-bit

Multiplier slice Parallel Carry

CLA

> 4-bit MPU slice

Replaced by Am2900 family 2 Am2901 ALU + Register file microprogrammed

Am2910 Microprogram sequencer
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Muxes
Decoders

Logic functions
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4-t0-1 mux

S S

Q\’

HGEFEDCRBEBA
TEs43210 g: :l:l:l:l:ll‘b::..'..‘-‘ E
- !
|
y 4
8-to-1 mux 16-to-1 mux

© Jeff Drobman
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Truth

Table

Logic

, Output Function
Function

F = f(X[N])

X[N] N inputs

{Minterms}

{my, my, ...}

A*B

—ROOO
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{Minterms} 2x 2:1 mux = 4:1 mux

{my, my, ...}

My ———

my; ——

A q—
m,
B
M3 ——
A

out
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Decoder

Ao

1/8
Lng 8 —3\—’ Decoder

address

— Out0
— Out1
— Qut2
— Out3
—» Out4
— Qut5
— OQut6
— Out7

a. A 3-bit decoder

=== A 2-to-4 line single bit decoder — — — o

-
T

Address lines

Truth Table

A1 Ao

D3 D2 D1 Do

0
0
1
1

-0 = O

- o o <o
(= — )
o o = O
S © o -

Minterm Equations
Do-Ai-Ag
Di-Ai-Ag
D2-Ai-Ao
D3=-Ar- Ao

DR JEFF
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DECODER EXPANSION

2x 2-to-4 - 3-to-8 (1 of 8)

Pt O—A
Decoder
o} La
A 2© 1 D,
3 A - 21 2 Dp
Az De Enable
8
2104
Decoder
o Da
29 1 Dg
=7 = Dg
3 - Do
Enable




CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Dr Jeff

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023




DR JEFF
SOFTWARE
AMD Decoder (1/10) AL

2016-2023

COMP122




CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Register File Input Side

Decoders

Write

Register number —

0
1

n-to-2n
decoder

n-2

Register 0

n-—1

1/2n

Register 1

C

Register n—2

Y 9%

Register data

C

D

Register n—1

DR JEFF
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MP
O Decoders
WRIT:
CONTROL
" REGISTER |
ADDRESS 1
1/2" o REGISTER 1 .
NTO1 o REGISTER 2 - "
DECODER - —
DATA 3 € lx'
o REGISTER 31 »
S REGISTER 32 gt B
REGISTER b
ADDRESS 2
REGISTER
WRITE M
]
X
WRITING
DATA
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REGISTER TYPE INSTRUCTION

NTROL

: )\ NSTRUCTION - REGISTERS
MEMORY

u
X
Control Signals
Active Inactive
LS

Instruction
SYSCAlZero$zero$zero
opcode rs rt rd shamt function

000000 00000 00000 00000 001100 To see details of control units and register bank click inside the functional block
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Related How do | make a converter (from excess 3 code to 8-4-2-1bcd code) using
only 2-to -1 MUX and not gate?

The truth table for excess-3 code to binary code converter is given below. Being 0000,
0001, 0010 and 1101, 1110, 1111 as invalid excess-3 code, output is made don't care.

TRUTH TABLI
_ Xz X2 %y Ke 1 Ba 22 A1 2o 1
bl ReteleRed e S
3 |
. & A ‘ ( .!
" ( 1 O N o v = AL
~ (\ i 1 o) O O d
O
i {0 T L "
BO S {m4,m6,m8,m10,m12} O . & o O (1
L. ‘ |
| s b 1 0 3 C )
= {m5,m6,m9,m10} et w e |
= ‘ {
1 o 0 0 O 1' ({ {‘
BZ = {m7,m8,m9,m10} { o sy | O ey \
o Sl Rl e s
{ Epre
B;={m1l,m12} o e o
¥ ¢ 0 | -
1 ‘ X RR 52
{ el X N
A { { 0 X X o {
X
| fLakdal }
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Combinational

**Quine-McKluskey
d Prime implicants
d Essential Pl's

s*Karnaugh (“K”) Maps

Sum of Products: minterms

General form  F(x, y) = {mgy, m;, m, mz}

y — Y
m m 1 0
X 0 2 :> X
m- ms 1 0

Example F(X, y) = {mo, ml} =Xy’ +xy’ - Yy’
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Example
ﬁiC D SoP (1s)
00 01 11 10 Gray codes
an 0 1 3 2
< 8 Logic distance=1
4 5
—
o
12 13
i
—
8 9
e
—

Selectanswer #1/1 -~
S =BCD + ABC
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m 00 01 1 5 10

Example

Gray codes

Logic distance=1
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Example

Gray codes

&
Lo
o

Logic distance=1

01

1l

10
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Example
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AN EPGE IS WHEN A SIGNAL  Positive ‘
TRANSITIONS BETWEEN TWO LEVELS
(O AND 1 FOR EXAMPLE).
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[from Wikipedia]

| Do—D Q D O—Q
- Clock D Qpext = Clocko+—E @l _l_e &0 Timing: setup, hold, delay
Risingedge 0 0 —1° O — I Clock [\

A master-siave D flip-flop. It responds on the faling 57 i

‘Risingedge | 1 | 1 0 '
| 9 g L] _ - R Q- edge of the enable input (usually a clock) Data ﬁ
- Non-Rising | X Q _|_ '

| 4 —tn
D flip-flop symbol 7 tsi_ﬁtco
178 o 1.4 Q Flip-Nlop setup, hold and clock-to- &7
D" FF c Outout Sy pesimtens

An implementation of a master—slave D fip-flop that 57
is triggered on the rising edge of the clock

Other FFs
J
- T QF - Q= Q
ol e clock
Q " O
A circult symbol A circuit symbol A JK flip-fiop made &7
for a T-type fiip- for a positive- of NAND gates
flop edge-triggered JK

flip-flop
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R_

Q

Q

{ R5 FLIP-FLOP

S Q

>

INPUTS OUTPUTS FUNCTION
S| R|@|&

DOES NOT RETAING IT5
I 1 CHANGE CURRENT OUTPUT
O|l1111]10 SET
1 O 0 1 RESET
&) | I 1 1 NOT ALLOWED

R HAVE NEGATION
SYMBOLS! THIS 1S CALLED
ACTIVE-LOW, AND IT MEANS
THEY ARE ACTIVATED WHEN
THE INPUT VOLTAGE 15
LOW (O) INSTEAD OF
HIGH (D.
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[from Wikipedial

EC
0
1
1

atch operation 5 So ©

Action Q- 2. a
| not sllowed R QF
Q=1 Symbol for an a 5 Q
Q=0 SR NAND latch Tl — 3
{ &
No Crange o S0 D [ —
Gated D latch truth table D o—

— -1 D Qr Q
D Q Q Comment

Ol
|

Quev  Opev  Nochange -

X

0 0 1 Reset } Q
: Symbol for a Ee

1

1 0 Set gated D laich

A gated D latch based on an SH NAND latch

_E.'u(
— —5
=
D
Tewx

Agated D lach in pass ranssir logic, similar o &0
the ones in T COL042 or e COTSHCTS integraned
cicults.



CSUN i B sorrware
Clocking olf brobman

2016-2023
COMP122

(H) 1
W LA L L LA

When the clock goes from low to high (O to 1), we see a rising edge, and when it goes back
from high to low (1 to 0), we see a falling edge.

RISING EDGE FALLING EDGE

_F g A=

WHEN THE CLOCK GOES | WHEN THE CLOCK GOES
FROM LOW TO HIGH FROM HIGH TO LOW
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Fuhahaha! Like | would ever forget! The T flip-flop only has one input, as you can see, and
is pretty simple. Whenever the input T changes from O to 1, or 1 to O, the output stored in
Q flips state. It looks something like this time chart.

ONCONC

INEVT T e THERE ARE T

e FLIP-FLOPS THAT

ACTIVATE JUST ON
FALLING EDGES
INSTEAD (1 TO O).

OUTRUT Q =

FP | | FLP | | FLIP |
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Toggle ___

INPUT —OD>

T

Q

Q

o

THIS CIRCUIT SHOWS HOW SEVERAL T FLIP-FLOPS

—0

D>

T

Q

Q

@

—

2|_

Q
Q

By the way, flipping between 1 and O is called toggling. The T in T flip-flop actually stands
for toggle! Also, by connecting several T flip-flops together as in the schematic below, you
can make a circuit that can count—a counter circuit.

Q-

TOGGLED BY THE FALLING EDGE OF AN INPUT SIGNAL
CAN ACT AS A COUNTER.

COUNTER CIRCUITS

rlelrl1el1]le]q
7 1]0 0 ]
0 0 0171 1 7 1
J 343343333
O1 2 3 45 617

Falling edge triggered
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>

Q3 [>

Q2 ‘

Qo0 | >
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KEE

}JK

JFF2
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The counter in this example is a 4-bit asynchronous counter based on JK flip-flops. The flip-flops are
connected with both their J and K terminals to the enable pin, putting them in “toggle mode". The flip-
flop to the left, producing the QO signal, will change its output state for each falling edge of the clock
signal, for example, a CPU clock. Since the output toggles for each falling edge of the clock, the clock
toggles twice for each toggle of the output.

| eI | | =
!
o l
f L] T T 1
0 s 10 15 20
1 P ——
| | |
| | | L I I "
= |
f L] L] T L}
0 3 10 15 20
1
| |
] | Q2
" | |
) L3 L3 T 1
0 s 10 15 20
o
|
| "y
o 1
I T T v T v v 1
0 s 10 15 20
Time [5]

This diagram from a simulation shows how the logic levels of the four bits change over time. The enable signal goes from 0 to 1
ofter one second.
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Ancient Egyptian multiplication

From Wikipedia, the free encyclopedia
(Redirected from Russian peasant algorithm)

In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant
multiplication), one of two multiplication methods used by scribes, was a systematic method for multiplying two numbers that does not require the multiplication
table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands (preferably the smaller) into a sum of powers of two and

Ancient Peasant Multiplication
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@ Jeff Drobman - Just now

&7 multiplication is usually done completely in hardware, via a 2D array of
XY (i) + C" multiplier modules, whereby each row generates a partial
product of the next signed digit of the multiplier times the multiplicand.
shifting occurs in the hardware placement of each row. this array can
also be pipelined, so multiple operations can be performed in
sequential concurrency.

(See the 1971 Am2505 2x4-bit multiplier
slice, and my personal MS thesis.)
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Ancient Peasant Multiplication
How do | write an ARM (Assembly) program that determines the

product of 2 numbers using Russian peasant multiplication?

@ Jeff Drobman - just now
W Former Stock Trader and App Developer (2003-present)
first learn ARM assembly language. then, follow this algorithm:

1. determine the smaller operand (use a “compare” op) and make it the multiplier
2. create a table of 2x the larger operand (multiplicand)

3. sum the table entries where the binary bit position is 1, and skip the 0's.
Examples |edit]

This example uses peasant multiplication to multiply 11 by 3 to arrive at a result of 33. 13x238

Decieats Binary: 3x11 13 238 1101 (13) 11101110 (238)

i1 3 1011 11 6 478 2 () 111011100 (478)

5 6 101 110

> 12 10 1108 3 952 11 (3) 1110111000 (952)

1 24 1 11000 1 +1904 1 (1) 11101110000 (1904)
33 100001

3094
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s*Simple
» Convert Multiplier to positive if negative
» Invert Multiplicand (if needed)

**Booth’s algorithm
» Use Multiplier as encoded by BA (groups of 2)
» Leave Multiplicand as is

Booth's multiplication algorithm is a
multiplication algorithm that multiplies two
signed binary numbers in two's complement
notation. The algorithm was invented by
Andrew Donald Booth in 1950 while doing
research on crystallography at Birkbeck
College in Bloomsbury, London. Boot!
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Signed 2’sC Multiplication
Booth's multiplication algorithm Booth’s Recoding

From Wikipedia, the free encyclopedia

Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was
invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London.['! Booth's algorithm is of interest in
the study of computer architecture.

The algorithm |edit)

Booth's algorithm examines adjacent pairs of bits of the 'N'-bit multiplier Y'in signed two's complement representation, including an implicit bit below the least
significant bit, y_4 = 0. For each bit y;, for i running from 0 to N - 1, the bits y;and y..{ are considered. Where these two bits are equal, the product accumulator P
is left unchanged. Where y;= 0 and y;_4 = 1, the multiplicand times 2'is added to P, and where y; = 1 and y;_y = 0, the multiplicand times 2’ is subtracted from P.
The final value of P is the signed product.

The representations of the multiplicand and product are not specified; typically, these are both also in two's complement representation, like the multiplier, but any
number system that supports addition and subtraction will work as well. As stated here, the order of the steps is not determined. Typically, it proceeds from LSB to
MSB, starting at i = 0; the multiplication by 2’ is then typically replaced by incremental shifting of the P accumulator to the right between steps; low bits can be
shifted out, and subsequent additions and subtractions can then be done just on the highest N bits of P.[2] There are many variations and optimizations on these
details.

The algorithm is often described as converting strings of 1s in the multiplier to a high-order +1 and a low-order -1 at the ends of the string. When a string runs
through the MSB, there is no high-order +1, and the net effect is interpretation as a negative of the appropriate value.

1-strings

0111..1 = 1000..0 -1
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Signed 2’sC Multiplication — Booth’s Recoding —

Drobman MS Thesis
1973
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Bit-slice 1971-80 —

Am2505

2= \5 3
Four-Bit by Two-Bit 2’s Complement Multiplier
- 4 > Advanced Micro Devices
- B ARPO7 u Complex Digital Integrated Circuits
M VooV irpstE
DlstmctlveC aracterlstICS'
° Provudes2scomplement multiplication at high speed e Multiplies in active HIGH (positive logic) or active
without correction. LOW (negative logic) representations.
e Can be used in an iterative scheme or time e Easy correction for unsigned, sign-magnitude or 1’s
sequenced mode. complement multiplication.
e Multiplies two 12-bit signed numbers in typically e 100% reliability assurance testing in compliance with
200ns. MIL STD 8883.

FUNCTIONAL DESCRIPTION: LOGIC SYMBOLS

The Am2505 is a high-speed digital multiplier that can multiply numbers
represented in the 2's complement notation and produce a 2’s comple-
ment product without correction. The device consists of a 4x2 multiplier
that can be connected to form iterative arrays able to multiply numbers

either directly, or in a time sequenced arrangement. The device assumes ACTIVE LOW ACTIVE HIGH

that the most significant digit in a word carries a negative weight, and can D6 b 1 1918 17 16 et i o
therefore be used in arrays where the multiplicand and multiplier have dif-

ferent word lengths. The multiplier uses the guaternary algorithm_ and per- (L <L (L J) é J’ (g J) (L (L | | | [ | |
forms the function S = XY + K where K is the input field used to add par- ROol s XAt Ko koI T TG TS
tial products generated in the array. At the beginning of the array the K 23—0 : 4 23— —lianE Y

A/,
inputs are available to add a signed constant to the least significant part 22—0| vo Am 2505 2 Y01 Am 2505

of the product. Multiplication of an_m_bit number b% an_n_bit _number in 4% 2 4x2

an array results in a product_having m+n Bits S0 that all possible com- sl ] 2's COMPLEMENT = | 2's COMPLEMENT

binations of product are accounted for. If _agco tiong} 2’s complement 2—o0| Cp MULTIPLIER Cn+gJ0—13 2—Cy MULTIPLIER Cn+g |—13
ed the i i £d, and overflow 20—p

20—o| P
S4 S3 S4 Sg S1 S S3 S; Sg

: = - 5 y
number of connectlon schemes are possible. Figure 4 shows diagramat- T ? T T T ? ! | | | | l
ically the connection scheme that results in the fastest multiply. If higher 10 8 9
speed is required an array can be split into several pa and the parts
added with high-speed look-ahead carry adders such as the Am9340. V.. = PIN 24
Provision is made in the design for multiplication in the active high G?\JCD = PIN 12
(positive logic) or active low (negative logic) representations simply by =
reinterpreting the active level of the input operands, the product, and a
polarity control P. For a more complete description and applications the
user is referred to the Am2505 Application Note.
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\ LOGIC DIAGRAM

X X

o &

26

s

oy 1 . - o
yowg_pf ﬂ%ﬂj shitter @g Cjtgj T
%W:BLD% %gj--,—yw s Ej :

i . y, A

jalese

240-Cemip.
< Li-troe

B lomenter,.

.?,
Co l G Ca He
o Sk
. / 502 Co® Ko@Dpe S =2
A W i
J \' Am2505 ORDERING INFORMATION ,5‘:‘2 ﬁ. / CONNECTION DIAGRAM ;
5 Top View
Voo yei Yo Wi P o ki kp Ky S5 SeCheae kDRSNS |
Package Temperature Order MEDDEOC ELIE n. ’
Type : Range Number 24 23 22 21 20 19 18 17 16 15 14 13 4
Silicone DIP 0°C to +75°C AM250559C .
Hermetic DIP 0°Cto +75°C  AM250559F — :
Hermetic DIP —55°C to +125°C AM250551F
Hermetic Flat Pak —55°C to +125°C AM250551P
Dice Note AM 2505XXD @ e L
(TR lé! |_| LILILILe!
x4 Cn X3 X9 X7 Xg Xx—1Sg S1 Sy S3GND
Note: The dice supplied will contain units which meet both 0°C to i
+75°C and —55°C to +125°C temperature ranges. NOTE: PIN 1 is marked for orientation.

T
\7:
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2x4-bit slices

v

8-bit x 8-bit multiply
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Non-Restoring Div

How do calculators calculate binary division?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-present)

Answered just now

the most common division algorithm used in the past was “non-restoring”. but there are
others, as listed in Wikipedia:

"Division algorithms fall into two main categories: slow division and fast division. Slow
division algorithms produce one digit of the final quotient per iteration. Examples of slow
division include restoring 7, non-performing restoring, non-restoring 7, and SRT 7
division. Fast division methods start with a close approximation to the final quotient and
produce twice as many digits of the final quotient on each iteration. Newton-Raphson 7' and
Goldschmidt 7 algorithms fall into this category.”
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Simple
Here's one way to implement the iterative approach: (There are others...) @

1. Align the leading 1s of the significands. (' This is usually easy in floating point—

they're already aligned by the format, unless one or both of the numbers is
subnormal (aka. denormal). 4

2. Compare the dividend and the divisor.

a. If the dividend is not smaller than the divisor, subtract the divisor from the
dividend and write a 1.

b. Otherwise, don't subtract, and write a 0.
3. Shift the dividend (or what remains of it) left by 1 bit.

4. Repeat steps 2 and 3 until you have sufficient quotient bits—namely, that you have
a 1in the "hidden 1" position of the quotient.
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The original Pentium implemented a faster iterative approach that produced 2 bits per
iteration: Radix-4 SRT division. 7 | won't go into the details of the algorithm. | will point out
three salient features:

1. It recodes the numbers into a redundant representation, meaning that each bit of
the inputs expand to multiple bits in the recoded representation. The redundant
representation allows deferring carries and borrows.

2. It uses a large lookup table to decide what action to take at each step.

3. Rather than just producing 2 bits of quotient per iteration, it actually produces one
of 5 values at each step: -2, -1, 0, +1, +2. Later steps can refine errors introduced
in earlier steps.

The infamous Pentium FDIV bug 7' arose from the lookup table mentioned above: There
were 5 missing +2 entries in the lookup table on the buggy versions of the Pentium.

SRT division is a nice speedup, but it's only a linear speedup. That is, it doubles the speed.
Double precision is still around twice as expensive as single precision.
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As transistors have gotten cheaper, modern hardware has turned to even faster
approaches:

e Newton-Raphson division 7 works by iterating Newton's root-finding method on

f(x) = % — d to find the reciprocal of the divisor d. Once you find that, you
multiply the dividend by that reciprocal. The infamous Quake 3 Hack (7' is based
on this approach, although in that case it was inverse square root rather than an
ordinary divide.

e Goldschmidt division [Z' works a little differently. Multiply both dividend and divisor
by a common factor F. F is chosen to push the divisor toward 1.0. Repeat until the
divisor is close enough to 1, and stop. If you choose the common factor properly,
this converges quickly. AMD processors since Athlon use this approach.

What's neat about Newton-Raphson and Goldschmidt approaches is that both converge
quadratically when implemented properly. That is, each iteration doubles the number of
valid bits in the result estimate. That means single precision results come after just a few
iterations, and double precision computations usually only require one additional iteration.
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Am2900 —
B. Combinational Propagation Delays.
C_ = S0pF
From Input Y F3 | Cn+4 G P F=0 OVR | RAM3 Q3
| ABAddess | 60 | 61 59 50 E 70 67 4 -
D 38 |3 | 4 | 32 | P s | -
o e w [ w | - | % | » | » | -
012 'd__'sd | e 45 4 o | w | ®» | -
e j_s? s | 2 | & | o0 | @ | s -]
678 ‘l_zg_ - - ol IS T Rl o 27
A Bypass ALU a7 D B 2 < N = -
(I = 2XX)
[ Cock & |00 | | & . 8 | s5 % | 20
C. Set-up and Hold Times Relative to Clock (CP) Input.
nput CP: L——-,———?
Set-up Time Hold Time Set-up Time Hold Time
Before H—+ L | After H—~ L | BeforeL—+H | AfterL—+ H
ABSoucodddem {8 .| ey | SNey | @
S —— 15 Do Not Change 0
e B T T T
len - = -1 e | e
(o2 - - s | o
N S T B
678 1" Do Not Change 0
mwages | - | - | e |
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TABLE IV E-2
Guaranteed Combinational Delays
Tc = =56°C to +126°C, Voo = 4.5V to 5.5V
Two's Complement Multiply Instruction
(la76s = 2, L4321 = Oy, I = 0)
© Output Slice
From Position | ¥ | Cp.y |G, P| Z(s)| N |OVR | DB a $I0, | SI0,4 m
A, B Address MSS 13| 93 - - |12 e | s2 - 97 - -
(Arith, Mode) IS, LSS 101 93 84 - - - 52 - 97 - -
MSS 78 62 - - 66 94 - - 64 - N
DA - IS, LSS 64 62 51 - - - - - 64 - -
EA MSS 85 56 - - 60 87 - - 58 - = -
IS, LSS 60 56 43 - - - - - 58 - -
- MSS 58 | 30 -| - o] e | - - = | - -
IS, LSS 40 30 - - - - - - 38 = =
MSS 108 | o7 - - | o0 | 102 ]| - . Nel - a1 -
lo 1S 105 97 81 - - - - . Tie . -
LSS 105 97 8 - - - . Tie . -
MSS 12| 98 - - m | - . We| o | - |
la321 IS 12 98 85 - - - . 75+ . -
LSS 12| o8 85 - = = -~ g .
MSS 9 | e - | - 00 | - o |Me| ¢« | -
lg765 1S 29 86 84 - - - . Tés . -
LSS 99 86 84 48 - - - . T4 . -
MSS 107 | 90 - - |89 | 116 | 39 a2 91 - -
- IS,LSS |89 | 90 74 | s7 | - - | % 2 91 - -
; MSS 90 65 - - 70 - - 72 - -
IS 90 65 48 - - - - - 2 - -
IEN Any - - - — - - . 5 o (e
103, S10, Any 26 - - - - - - - - - -

FeaS+ChitZ=0

S+R+C,isZ =1
Y3 = F3 @ OVR (MSS)
Z = Qg (LSS)
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TABLEIVSE
Guaranteed Set-up and Hold Times
Te = ~865°C to +126°C, Vo = 4.5V 1o 5.5V
All Functions
CAUTION: READ NOTES TO TABLE B. NA = Not Applicable; no timing constraint.
HIGH-t0-LOW LOW-t0-HIGH
With Respect \ ‘
Input to this Signal Set-up Hold Set-up Hold Comment
Y Clock NA NA 23 3 To store Y in RAM or Q
WE HIGH Clock 25 Note 2 Note 2 0 | To Prevent Writng
WE Low Clock NA NA 35 0 | ToWrite into RAM
A, B as Sources Clock 38 3 NA NA See Note 3 T
To Write Data only into
B as a Destination Clock and WE both LOW 6 Note 4 Note 4 3 “w.m
QI0g, QI0, Clock NA NA 23 3 Toj'!_g_ .
lg7es Clock 24 Note 5 Note § ._ ). S
TEN HIGH Clock 30 Note 2 Note 2 0 To Prevent Writng into Q|
IEN LOW Clock NA NA 30 0 To Write into Q
laaz10 Clock 24 74 0 See Note 6
Notes: 3. A and B addresses must be set-up prior 1o clock LOW transi-

1. For set-up times from all inputs not specified in Table IV B,

the set-up time is computed by calculating the delay 10 stable
Y outputs and then allowing the Y set-up time. Even if the
RAM is not being loaded, the Y set-up time is necessary 10
set-up the Q register. All unspecified hold times are less than
or equal 1o zero relative to the clock LOW-to-HIGH edge.

WE controls writing into the RAM. IEN controls writing into Q

" and, indirocty. contol WE through the write output. To pre-

vent writing, IEN and WE must be HIGH during the entire clock
LOWHm.ThoymuygoLOWnﬁ«hoclod(humLOWlo
cause a write provided the WE LOW and ITEN LOW set-up
times are met. Having gone LOW, they should not be returned
HIGH until after the clock has gone HIGH.,

tion to capture data in latches at RAM output.

. Writing occurs when CP and WE are both LOW. The B ad-

dress should be stable during this entire period.

Because lgy¢s CONtrol the writing or not writing of data into
RAMand Q, should be stable during the entire clock LOW
time unless is HIGH, preventing writing.

. The set-up time prior 10 the clock LOW-to-HIGH transition

occurs in paraliel with the set-up time prior 10 the clock HIGH-
10-LOW transition and the clock LOW time. The actual set-up
time requirement on I3, relative 1o the clock LOW-10-HIGH
transition, is the longer of (1) the set-up time prior 10 clock
L = H, and (2) the sum of the set-up time prior 10 clock
H = L and the clock LOW time.
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Figure 8.10.3: A finite-state machine is implemented with a state register that holds the current state
and a combinational logic block to compute the next state and output functions (COD Figure B.10.3).

The latter two functions are often split apart and implemented with two separate blocks of logic, which may require fewer gates.

Outputs

Combinational logic

Next state
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