CALIFORNIA (B3| PR JEFF

> B2 soFTwaARE

STATE UNIVERSITY INDIE APPDEVELOPER
NORTHRIDGE <5P U © Jeff Drobman

2016-2023

CSUN

COMP222

Rev 5-1-23

Computer Architecture

GPU

Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

AAAAAAAAAAA
STATE UNIVERSITY

COMP22

DR JEFF

: (&2 soFTwaRE
GPU Preview ol
 J
%*General
< CUDA

s*zyBook Ch 9

**GPU Products
d Apple

d AMD
= \lega (see new AMD RDNA3 slides in Roadmap file)

= Radeon/Navi
 Intel

= Xe

= Max GPU
. Nvidia

= Cuda

= GeForce

J ARM
= Mali

CSUN : 85 sorrware
sTATE NSy Section ® Jeff Drobman

2016-2023
COMP222

New GPU Slicles

AAAAAAAAAAAA
STATE UNIVERSITY

COMP222

DR JEFF

Video Frames (Mpixels) = e
e Supports 12/10 bits RAE RGB
e Supports images sizes ¢ Mpixels
o 3840x2160 e 83
o 2560x1440 e 3.7
o 1080p(1920x1080) « 2.1
o 720p(1280x720) <+ 0.9

S DR JEFF

CSUN B)-oC e

or ?r;Lé:?‘l;:;A”Y @le)IEAPEDEVELOPER
ANORTHR[DGSE G P U VS C P U Eff robman

comp222 Quora 2016-2023

While CPUs focused on increasing single-thread performance, GPUs focused on
increasing throughput. This is apparent in terms of architecture.

I

CPU

image: Fig. 1. CPU vs GPU Architecture @

Wide GPU cores (AMD CU, Nvidia SM) can deal with dozens of SIMD operations at once,
with each values corresponding to things like polygons vertices. These SIMD lanes can be
kept occupied because the workload is embarrassingly parallel. A CPU would have a very
hard time mapping a C program to more than a few lanes at once, by contrast.

Trying to make a CPU more GPU-like, or vice versa, would only result in a decrease in
performance. Both units are optimized for their particular jobs.

CSUN B8 soFrware
e SATITORR SoC =CPU + GPU O et brobrnan

2016-2023
COMP222 o

CPU cores

.......

.......................

This SOC has four CPU cores (ARM Cortex) and 192 GPU cores (Kepler).

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP222

@ DR JEFF
25| soFTwaRrE

GPU ‘“ Core S' / oo

Quora 2016-2023

g Victor Eijkhout - Follow eee X
To quote Grace Hopper: "Hardware is the part of a computer that you can

kick". - By
If a GPU has around 1000 to 2000 cores, then why does a CPU still
have only 12 cores?

A GPU does not have a thousand cores. It has a couple of dozen, which have a
bunch of SIMD lanes. (Those are the “warps": threads in a warp are really
SIMD lanes in a single processor.) All this “massively parallel” stuff is just
NVidia marketing.

Oh, and how many cores does a CPU have? The Intel Xeon Phi “Knights
Landing” has 68 cores (depends slightly on the model) no matter how you
count it. Each core has 4 hyperthreads, so that's kinda 272 cores (in fact, that
is what many hardware discovery tools will report) and each of those is 8-
wide SIMD, so it has 2000+ cores if you use the NVidia way of counting.

That's why NVidia coined the term “SIMT" Single Instruction Multiple Thread:
a GPU executes only a single (sub)program, but it spreads it over many
threads. Like having just one core, but with an enormous SIMD width.

SIMD €= SIMT?

GPU “Cores

COMP222 Quora

C) Larry Seiler - Follow X
PhD in Computer Science, Massachusetts Institute of Technology (Graduated
1985) - 3y

What is the difference between CPU cores and GPU cores in terms of

computation?
GPUs were originally designed to run a large number of processing streams at
once — first tens, then hundreds, now sometimes thousands. Originally the
processing streams were fixed function, but now they are programs with
branching, random memory access and other general purpose capabilities.
And they aren't just used for graphics: “compute shaders"” are used for a wide
variety of processing.

The key difference remains that CPUs are primarily good for data-dependent
algorithms that have parallelism but not huge amounts, whereas GPUs are
primarily good for algorithms that have a huge amount of inherent parallelism
and that minimize the amount of data-dependent control flow. Getting the
best bandwidth is of secondary importance to minimizing the latency.

CSUN

CALIFORNIA

@ DR JEFF
23 soFTware

INDIE APPDEVELOPER
STATE UNIVERSITY a C e © Jeff Drobman

Quora 2016-2023

NORTHRIDGE

COMP222

& Joe Zbiciak A - 52m
They do, in fact, have L1/L2 caches in the streaming multiprocessor (SM)
units (NVidia Ampere). The diagram below doesn't show the shared L2. It's
40MB.

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT3Z INT32 FP32 FP32 FP64 INT3Z INT32 FP32 FP32 FP64
INT3Z INT32 FP32 FP32 FP64 INT3Z INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT3Z INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT3Z INT32 FP32 FP32 FP64
TENSOR CORE TENSOR CORE
INT32 INT3Z FP32 FP32 FP&4 INT32INT32 FP32 FP32 FPG4
INT32 INT3Z FP32 FP32 FP64 INT3ZINT32 FP32 FP32 FPG4

INT32 INT3Z FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP&4 INT32 INT32 FP32 FP32 FPG64

LOY Loy Lo/ Loy LoV Loy LoV Loy LD/ Lo/ Lo/ Lo/ Lo Loy LOY
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

CSUN : 82 sorrware
Section

2016-2023
COMP222

General GPU

DR JEFF
CSUN I 'SOFTWARE
. G P U S orrommoren
NORTHRID 2016 2023

coMP222 Quora

What is the reason for the big difference in performance
between graphics processing units (GPUs) and central
processing units (CPUs) when it comes to rendering
videos or playing video games, but not so much when it
comes to web browsing?

@ Jeff Drobman
&Y Lecturer at California State University, Northridge (2016-present) - ® 16m -

GPU's are designed for graphics rendering to produce a million-pixel frame 30-60
times per second. that involves a lot of functions (3D, shading, etc.) which can be given
their own threads. in fact, CPU cores typically handle 1-2 threads, while GPU cores can
handle 1000's.

High Thread Count!

CSUN : 2 soFrware
CPU/GPU Units Rel

comp222 Quora

o Brett Bergan - Follow eee X
Building PC's for 25 years - Updated Jul 6

Does an entire computer chip get rendered useless if just one of its
billions of transistors gets damaged or placed incorrectly?

Ironically, the majority of CPU/GPU chips produced are dies that have flaws.
And yes, the flawed sections of the chip are useless.

Have you heard of the Ryzen 5 5600X?

These are chips with a fatal flaw in one of the CPU cores. A perfect chip is
called a Ryzen 7 5800X. But if the die has a flaw in one of the cores, the pair
of cores affected is simply cut off from the rest of the chip and used as a six
core processor instead of an eight-core processor.

This is even more common in GPU production. RTX 3000 dies have thousands
of cores. The functional unit is called a streaming multiprocessor (SM). Each
SM has one RT Core and 128 so called CUDA cores along with a certain
amount of “local” VRAM along with Integer units, floating point units and
tensor cores.

If one part of the SM is damaged the entire SM is junk. So it is simply removed
from the system.

. EFF
CSUN B sorrware
AT GPU O et Brobman
NORTHRIDGE 2016_2023
COMP222 _ \yikipedia
Graphics processing unit

From Wikipedia, the free encyclopedia

For an expansion card that contains a graphics processing unit, see Video cards.
"GPU" redirects here. For other uses, see GPU (disambiguation).

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to
accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded
systems, mobile phones, personal computers, workstations, and game consoles. Modern GPUs are very efficient at
manipulating computer graphics and image processing. Their highly parallel structure makes them more efficient than general-
purpose central processing units (CPUs) for algorithms that process large blocks of data in parallel. In a personal computer, a
GPU can be present on a video card or embedded on the motherboard. In certain CPUs, they are embedded on the CPU
die.["]

The term "GPU" was coined by Sony in reference to the PlayStation console's Toshiba-designed Sony GPU in 1994.12] The
term was popularized by Nvidia in 1999, who marketed the GeForce 256 as "the world's first GPU".[*] It was presented as a
"single-chip processor with integrated transform, lighting, triangle setup/clipping, and rendering engines".[*] Rival ATI
Technologies coined the term "visual processing unit" or VPU with the release of the Radeon 9700 in 2002.[5]

CSUN . ('S, S ARE
ChTomy GPU Histo ry SeEm———

2016-2023
COMP222 — Wikipedia

The term "GPU" was coined by Sony in reference to the 32-bit Sony GPU (designed by Toshiba) in the PlayStation video game
console, released in 1994.[]

In the PC world, notable failed first tries for low-cost 3D graphics chips were the S3 VIRGE, AT| Rage, and Matrox Mystique.
These chips were essentially previous-generation 2D accelerators with 3D features bolted on. Many were even pin-compatible
with the earlier-generation chips for ease of implementation and minimal cost. Initially, performance 3D graphics were possible
only with discrete boards dedicated to accelerating 3D functions (and lacking 2D GUI acceleration entirely) such as the
PowerVR and the 3dfx Voodoo. However, as manufacturing technology continued to progress, video, 2D GUI acceleration and
3D functionality were all integrated into one chip. Rendition's Verite chipsets were among the first to do this well enough to be
worthy of note. In 1997, Rendition went a step further by collaborating with Hercules and Fujitsu on a "Thriller Conspiracy"
project which combined a Fujitsu FXG-1 Pinolite geometry processor with a Vérité V2200 core to create a graphics card with a
full T&L engine years before Nvidia's GeForce 256. This card, designed to reduce the load placed upon the system's CPU,
never made it to market.[ctation needed]

OpenGL appeared in the early '90s as a professional graphics AP, but originally suffered from performance issues which
allowed the Glide API to step in and become a dominant force on the PC in the late '90s.[4'] However, these issues were quickly ¢
wayside. Software implementations of OpenGL were common during this time, although the influence of OpenGL eventually led t
time, a parity emerged between features offered in hardware and those offered in OpenGL. DirectX became popular among Winc
90s. Unlike OpenGL, Microsoft insisted on providing strict one-to-one support of hardware. The approach made DirectX less popt
initially, since many GPUs provided their own specific features, which existing OpenGL applications were already able to benefit f
generation behind. (See: Comparison of OpenGL and Direct3D.)

CSUN . &) sorrware
ChTomy GPU Histo ry SeEm———

2016-2023
COMP222 _ wikipedia

2010 to present |edit)

In 2010, Nvidia began a partnership with Audi to power their cars' dashboards. These Tegra GPUs were powering the cars' dashboard, offering increased functionality
to cars' navigation and entertainment systems.[4%] Advancements in GPU technology in cars has helped push self-driving technology.5%] AMD's Radeon HD 6000
Series cards were released in 2010 and in 2011, AMD released their 6000M Series discrete GPUs to be used in mobile devices.®'] The Kepler line of graphics cards
by Nvidia came out in 2012 and were used in the Nvidia's 600 and 700 series cards. A feature in this new GPU microarchitecture included GPU boost, a technology
adjusts the clock-speed of a video card to increase or decrease it according to its power draw.[52] The Kepler microarchitecture was manufactured on the 28 nm
process.

GPU companies | edit] Nvidia, AMD, Intel

Many companies have produced GPUs under a number of brand names. In 2009, Intel, Nvidia and AMD/ATI were the market share leaders, with 49.4%, 27.8% and
20.6% market share respectively. However, those numbers include Intel's integrated graphics solutions as GPUs. Not counting those, Nvidia and AMD control nearly
100% of the market as of 2018. Their respective market shares are 66% and 33%./5'] In addition, S3 Graphics!®2] and Matrox!%] produce GPUs. Modern smartphones

also use mostly Adreno GPUs from Qualcomm, PowerVR GPUs from Imagination Technologies and Mali GPUs from ARM.

Computational functions |edi) 3D graphics rendering and decoding

Modern GPUs use most of their transistors to do calculations related to 3D computer graphics. In addition to the 3D hardware, today's GPUs include basic 2D
acceleration and framebuffer capabilities (usually with a VGA compatibility mode). Newer cards such as AMD/ATI HD5000-HD7000 even lack 2D acceleration; it has to
be emulated by 3D hardware. GPUs were initially used to accelerate the memory-intensive work of texture mapping and rendering polygons, later adding units to
accelerate geometric calculations such as the rotation and translation of vertices into different coordinate systems. Recent developments in GPUs include support for
programmable shaders which can manipulate vertices and textures with many of the same operations supported by CPUs, oversampling and interpolation techniques
to reduce aliasing, and very high-precision color spaces. Because most of these computations involve matrix and vector operations, engineers and scientists have
increasingly studied the use of GPUs for non-graphical calculations; they are especially suited to other embarrassingly parallel problems.

With the emergence of deep learning, the importance of GPUs has increased. In research done by Indigo, it was found that while training deep learning neural
networks, GPUs can be 250 times faster than CPUs. The explosive growth of Deep Learning in recent years has been attributed to the emergence of general purpose
GPUs.[%¥ There has been some level of competition in this area with ASICs, most prominently the Tensor Processing Unit (TPU) made by Google. However, ASICs
require changes to existing code and GPUs are still very popular.

sy DR JEFF
CSUN : W) sorware
peCauronIy G P U Hi sto ry e
NORTHRIDGE 2016_2023
COMP222
PRHCh9 ——
A brief history of GPU evolution

Fifteen years ago, there was no such thing as a GPU. Graphics on a PC were performed by a video graphics array (VGA) controller. A VGA
controller was simply a memory controller and display generator connected to some DRAM. In the 1990s, semiconductor technology
advanced sufficiently that more functions could be added to the VGA controller. By 1997, VGA controllers were beginning to incorporate
some three-dimensional (3D) acceleration functions, including hardware for triangle setup and rasterization (dicing triangles into individual
pixels) and texture mapping and shading (applying "decals" or patterns to pixels and blending colors).

In 2000, the single chip graphics processor incorporated almost every detail of the traditional high-end workstation graphics pipeline and,
therefore, deserved a new name beyond VGA controller. The term GPU was coined to denote that the graphics device had become a
processor.

Over time, GPUs became_more programmable, as programmable processors replaced fixed function dedicated logic while maintaining the
basic 3D graphics pipeline organization. In addition, computations became more precise over time, progressing from indexed arithmetic, to
integer and fixed point, to single precision floating-point, and recently to double precision floating-point. GPUs have become massively
parallel programmable processors with hundreds of cores and thousands of threads.

Recently, processor instructions and memory hardware were added to support general purpose programming languages, and a
programming environment was created to allow GPUs to be programmed using familiar languages, including C and C++. This innovation
makes a GPU a fully general-purpose, programmable, manycore processor, albeit still with some special benefits and limitations.

GPU graphics trends

GPUs and their associated drivers implement the OpenGL and DirectX models of graphics processing. OpenGL is an open standard for 3D
graphics programming available for most computers. DirectX is a series of Microsoft multimedia programming interfaces, including
Direct3D for 3D graphics. Since these application programming interfaces (APIs) have well-defined behavior, it is possible to build effective
hardware acceleration of the graphics processing functions defined by the APIs. This is one of the reasons (in addition to increasing device
density) why new GPUs are being developed every 12 to 18 months that double the performance of the previous generation on existing
applications.

GPU Functions e

COMP222

GPU forms |edit]

Terminology | edit)
In personal computers, there are two main forms of GPUs. Each has many synonyms:[65]

« Dedicated graphics card - also called discrete.
« Integrated graphics - also >alled: shared graphics solutions, integrated graphics processors (IGP), or unified memory architecture (UMA).

Video decoding processes that can be accelerated | edit]
The video decoding processes that can be accelerated by today's modern GPU hardware are:

« Motion compensation (mocomp)
Inverse discrete cosine transform (iDCT)

¢ Inverse telecine 3:2 and 2:2 pull-down correction
Inverse modified discrete cosine transform (iMDCT)

In-loop deblocking filter
Intra-frame prediction

Inverse quantization (1Q)
Variable-length decoding (VLD), more commonly known as slice-level acceleration
« Spatial-temporal deinterlacing and automatic interlace/progressive source detection

« Bitstream processing (Context-adaptive variable-length coding/Context-adaptive binary arithmetic coding) and perfect pixel positioning.

The above operations also have applications in video editing, encoding and transcoding

CSUN : B8 sorrware
GPU Functions
COMP222

Usage specific GPU | edit |

Most GPUs are designed for a specific usage, real-time 3D graphics or other mass calculations:

1. Gaming
e GeForce GTX, RTX
* Nvidia Titan
+ Radeon HD, R5, R7, R9, RX, Vega and Navi series
2. Cloud Gaming
* Nvidia Grid
« AMD Radeon Sky
3. Workstation (Video editing, encoding, decoding, transcoding and rendering (digital content creation), 3D animation and re
(CGl), videogame development and 3D texture creation, product development/3D CAD, structural analysis, simulations, (
calculations...)
¢ Nvidia Quadro
 AMD FirePro
« AMD Radeon Pro
« AMD Radeon VII
4. Cloud Workstation
¢ Nvidia Tesla
e AMD FireStream
5. Artificial Intelligence training and Cloud
¢ Nvidia Tesla
« AMD Radeon Instinct
6. Automated/Driverless car

« Nvidia Drive PX

CSUN

@ DR JEFF
) 23 soFTware

T GPU’s 8o Brobman
C(;';\R/INI;R;;Z 2016-2023
J lee Graphics Processing Unit

’ INTEL® CORE™ |5'2509
sRooT 3,306k |
MALAY : P8 ': CiLns
L101B257 @ HRTERKS IR |

Intel Graphics Technology (GT) is the
collective name for a series of integrated
' graphics processors (IGPs) produced by Intel
, that are manufactured on the same package)
y or die as the central processing unit (CPU). It
was first introduced in 2010 as Intel HD
y Graphics.

__ A graphics processing unit (GPU) is
a specialized electronic circuit
designed to rapidly manipulate and
alter memory to accelerate the
creation of images in a frame buffer
intended for output to a display

device. GPUs are used in embedded systems, mobile

phones, personal computers, workstations, and game
consoles. Modern GPUs are very efficient at
manipulating computer graphics and image processing.

Their highly parallel structure makes them more efficient

than general-purpose central processing units (CPUs)

for algorithms that process large blocks of data in
parallel. In a personal computer, a GPU can be present
on a video card or embedded on the motherboard. In
certain CPUs, they are embedded on the CPU die.

\X/ Wikipedia

CSUN B sorrware
mSuromIn C P U VS G P U e

2016-2023
COMP222

Why don't CPUs have as much parallelism as a GPU?

Jeff Drobman, Lecturer at California State University, Northridge (2016-
- present)

Answered just now

one way to look at it: CPU's operate mostly on single data (SISD or MISD), and often
relegate parallel operations on vector data to the GPU's. while some CPU’s do have
extensions to support vectors (SIMD, AVX), when paired with GPU's they don't need the
SIMD extensions because the GPU's will do that work, and more effectively with their
very large number of EU's and threads.

CSUN) < oFwane
&) soFTW;
CPU vs GPU: I|ILP / DLP e

2016-2023
COMP222

**CPU
O ILP limited (typ <=4 per core, <=24 cores)
 DLP small in AVX-128/256/512
1 Cores: larger so fewer
1 Threads limited to 2-4/core
[Integer operations (mostly)

*GPU
 ILP very high (typ >1000)
(J DLP very high (1000’s of EU’s)
1 Cores: smaller so many more

1 Threads in the 1000’s
J FP operations

DR JEFF

CSUN . U@S%ﬁlﬁﬁgE
s Discrete vs Integrated GPU™ eusan
COMP222 _ Quora

@ Mohd Zaid, computer enthusiast, techno freak nd android lovers
4 Answered Aug 9, 2016

Originally Answered: Why Intel HD graphics is unfit for gaming?

The difference is of speciality.

The intel HD graphics are not very good for gaming because they are integrated
graphics as compared to the dedicated graphic cards such as Nvidea's

The Integrated (or shared graphics) can never be as good as the dedicated one.
Integrated vs. Dedicated graphics

As its name suggests, a dedicated graphics card — often also called discrete
graphics — is a piece of specialist hardware dedicated solely to managing the
graphics performance in a computer.

It consists of a graphics processing unit (GPU), which functions similarly to the
main processor (CPU) in the computer, and its own dedicated RAM.

DR JEFF

CSUN . U@S%ﬁlﬁﬁgE
s Discrete vs Integrated GPU™ eusan
COMP222 _ Quora

@ Mohd Zaid, computer enthusiast, techno freak nd android lovers
4 Answered Aug 9, 2016

Originally Answered: Why Intel HD graphics is unfit for gaming?

In shared — or integrated — graphics systems, these components are built into
the same chip as the CPU. The memory assigned to graphics is shared with the
main system memory. This means if your PC has 4GB of RAM and 1GB shared
graphics memory, only 3GB of that memory will be available to general computing
tasks.

A dedicated graphics card is generally more powerful than a shared graphics
system. It's also larger, uses more power and generates more heat.

Some computers offer both shared and dedicated graphics, providing the choice
between the best graphical performance or longer battery life. In these systems,
you can either make the choice yourself, of the computer will decide what's best on
the fly.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

APU = CPU + GPU

display

x4 PCI-

GPU
Memory

(a)

Intel

Intel
CPU

—
X16 PCI-Exprpss Link 1 T e s

North DDR2
Bridge Memory
Express Link 128-bit
derivative 667 MT/s
South
Bridge

(=)

DR JEFF

SOFTWARE
INDIE APPDEVELOPER
© Jeff Drobman
2016-2023
Hennessy & Patterson —
AMD
CPU
CPU
core
128-bit
latama: bus t 667 MT/s
North DDR2
Bridge =" | Memory

M

lay

x16 PCI-Ex

GPU
Memory

~— -

Chipset

bress Link * HyperTransport 1.03

CSUN B8 soFrware
e SATITORR SoC =CPU + GPU O et brobrnan

2016-2023
COMP222 o

CPU cores

.......

.......................

This SOC has four CPU cores (ARM Cortex) and 192 GPU cores (Kepler).

CSUN 858 soFrware
e GPU<CPU Clock Fre g & iffCroiman

2016-2023
COMP222

71.7 B!
range in
Celsius

- corresponds to
approx 60F
and160F range

-GPU runs

at approx
30C/86F idle,
70C/158F load

- GPU max temp
IS approx

98C/208F

This is an image made with a thermal imaging camera.

CSUN &R sorrware
pmShronNs G PU e

2016-2023
comp222 Quora

0 Huseyin Tugrul Buyukisik, B.S. Numerical Analysis, Physics Engineer
(2012)

A GPU is made of multiple “streaming multiprocessors”.

A streaming multiprocessor is made of multiple “warp schedulers”

Each warp scheduler run commands on multiple SIMD/SIMT units.

There are many SIMD/SIMT units per streaming multiprocessor.

Each SIMD/SIMT unit is made of many ALU (arithmetic logic units) with their
floating-point units. There are also dedicated compute units to help SIMD/SIMTs in
computing. These are special function units, tensor cores, raytracing cores, texture
z-order fetching but not all GPUs have same types, For example, older Nvidia GPUs
have only special function units. Old Amd GPUs have different number of floating-
point units for 64-bit.

(@ DR JEFF
CSUN 25 soFTWARE
. GPU & e Srobran
NORTHRIDGE

COMP222 Q,u()ra 2016-2023

g Kiryl Persianov X
Studied Ontology (philosophy) & Artificial Intelligence - Updated 7mo

Are the highly-marketed Tensor cores from Nvidia, Tensor processing
Units (TPU) from Google, and other Deep Learning and Machine
Learning processors just simple matrix-multiplication accelerators?

It is just simple data matrix-multiplication accelerators. All the rest is
commercial propaganda.

Unlike other computational devices that treat scalar or vectors as primitives,
Google's Tensor Process Unit (TPU) ASIC treats matrices as primitives. The
TPU is designed to perform matrix multiplication at a massive scale.

(@ DR JEFF
CSUN 25 soFTWARE
. GPU & e Srobran
NORTHRIDGE

COMP222 Q,u()ra 2016-2023

g Kiryl Persianov X
Studied Ontology (philosophy) & Artificial Intelligence - Updated 7mo

Are the highly-marketed Tensor cores from Nvidia, Tensor processing
Units (TPU) from Google, and other Deep Learning and Machine
Learning processors just simple matrix-multiplication accelerators?

A Graphical Processing Unit (GPU) enables you to run high-definition graphics
on your computer. GPU has hundreds of cores aligned in a particular way
forming a single hardware unit. It has thousands of concurrent hardware
threads, utilized for data-parallel and computationally intensive portions of an
algorithm. Data-parallel algorithms are well suited for such devices because
the hardware can be classified as SIMT (Single Instruction Multiple Threads).
GPUs outperform CPUs in terms of GFLOPS.

(@ DR JEFF
CSUN 25 soFTWARE
. GPU & e Srobran
NORTHRIDGE

COMP222 Q,u()ra 2016-2023

e Kiryl Persianov
Studied Ontology (philosophy) & Artificial Intelligence -

The TPU and NPU go under a Narrow/Weak Al/ML/DL accelerator class of
specialized hardware accelerator or computer system designed to accelerate
special Al/ML applications, including artificial neural networks and machine

vision. ASIC

Big-Tech companies such as Google, Amazon, Apple, Facebook, AMD and
Samsung are all designing their own Al ASICs.

Typical applications include algorithms for training and inference in computing
devices, as self-driving cars, machine vision, NLP, robotics, internet of things,
and other data-intensive or sensor-driven tasks. They are often manycore
designs and generally focus on low-precision arithmetic, novel dataflow
architectures or in-memory computing capability, with a typical NAl integrated
circuit chip contains billions of MOSFET transistors.

Focus on training and inference of deep neural networks, Tensorflow uses a
symbolic math library based on dataflow and differentiable programming

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

@ DR JEFF
25| soFTwaRrE

’ INDIE APPDEVELOPER
© Jeff Drobman
S 2016-2023

Quora

Comparing say the speed of the interface between a soldered down GPU to
soldered VRAM chips, to a socketed CPU to socketed DRAM:

CPU->DRAM, DDR4-2133 to 2667, 2.667 GT/s, 64 bits * 2 = 128 bits
GPU->VRAM, GDDR6 (10-18 Gbps), 18 GT/s, 256 to 384 bits

A common CPU to DRAM interfaces today is DDR4, with speeds of 2133 to
2667 MHz.

See the big speed and width difference? A typical CPU will have 2 channels of
64 bits at DDR4 speeds, which is analogous to each bit having 2.667
Gigatransfers/second.

A typical high-end GPU will have 256 - 384 bit bus to the VRAM at GDDR6
speeds, which can run at up to 18 Gbps, analogous to 18
Gigatransfers/second.

To achieve that kind of speed and width out from the GPU to its VRAM, the
interface has to be soldered. For various signal integrity and board routing

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF
25| soFTwaRrE

’ INDIE APPDEVELOPER
© Jeff Drobman
S 2016-2023

Quora

CPU Cache vs. GPU VRAM

You might ask, well, doesn’t the CPU suffer with the DRAM interface being so
slow? Yes, but it is very well masked by the CPU cache (L1, L2, LLC) in the
CPU such that in an optimal situation with typical CPU workloads, the caches
can maintain a > 90% cache hit rate, i.e. most of the accesses by the CPU to
DRAM can be satisfied by the cache.

A typical GPU workload cannot be cached in the same way, it just needs the
fast access to its VRAM. (you could argue that the VRAM is a big cache for the
GPU and the alternative is to access the CPU DRAM).

So if a GPU has to be soldered down to a board with its VRAM, by that point,
it's going to be a pretty big board to be socketed like a CPU. Technically
speaking, it's not practical to build the GPU on a socket and make it run at the
speeds it does.

Still, it still ends up that GPUs are sold separate, and that's called a video card!
The complete package of the GPU, VRAM, and the power supply for both of
them, are all packaged into a board and that is sold as a video card, which you

can buy.
Video card

= DR JEFF
CSUN . e 2328 soFTwARE
I Quora Nvidia A100 SM © e brobman
COMP222 Joe Zbiciak replied to your comment on an answer to: "The difference of number
of cores between CPUs and GPUs is huge, then why CPU’s performance is far
better than GPUs?"

If | understood correctly, that diagram represents one streaming multiprocessor (,SM)
core, and apparently the A100 has 108 of them. One SM has:

64 FP32 cores

32 FP64 cores “Cores” or “EU’s?
64 INT32 cores

4 Tensor cores

65,536 32-bit registers

192K L1 cache [shared RAM

The SM is partitioned ways internally, sharing common L1 instruction and L1 data
caches. Each partition apparently has its own LO instruction cache.

That's separate from the texture processing cores (TPCs), of which there's 54.

So it's either 1 core or 132 cores, depending on how you want to look at it.

DR JEFF
CSUN C P U I_ O D C h 25 soFTWARE
. - © Jeff Drobman
NORTHRIDGE Quora a C e 2016_2023
COMP222 Joe Zbiciak replied to your comment on an answer to: "The difference of number

of cores between CPUs and GPUs is huge, then why CPU’s performance is far
better than GPUs?"

LO cache is its own level in the hierarchy, above the L1. LO caches tend to be tiny
compared to the L1.

The first processor | encountered with an LO cache was an x86 clone that didn't make
it to market. It had an LO data cache that was a mere 256 bytes. It had a really short
latency and acted essentially as an extended register file. Since x86 was a memory-
register architecture, it made sense there.

We explored the possibility of an LO cache in DSP designs while | worked there.
Usually they were more complexity than their worth.

Where we saw potential value on the data side of our DSPs was in reducing load-to-
use latency to more like 2 cycles. That typically helps pointer-chasers though, and
those have poor locality, and so that's what nixed it there. The LO cache would have
used discrete registers rather than an SRAM.

We couldn’t use it to save power on the data side, because we still needed to launch a
tag lookup in the L1D in parallel to avoid hurting its load-to-use latency.

e QuUoOra C P U LO I = C dC h e O el Drooman

COMP222 Joe Zbiciak replied to your comment on an answer to: "The difference of number
of cores between CPUs and GPUs is huge, then why CPU’s performance is far
better than GPUs?"

The SPLOOP buffer in some of the later DSPs | worked on could be considered a form
of LO instruction cache, although it was fairly specialized and did more than cache
things. It actually constructed prologs and epilogs for software pipelined loops!

Loop buffers are a big energy efficiency win on the instruction side.

| don't know how big the LO instruction cache is in the NVidia Ampere architecture. My
guess is that it's big enough to cover a typical loop, times the number of threads
actively making progress.

’ A DR JEFF
CSUN B soFTwaRrE
. GPU & e Srobran
NORTHRIDGE

2016-2023
comp222 Quora

How GPU Acceleration Works

Application Code
B]
SRR R R)
[re = s —w]
Craseessseseses—-e—__—"
Compute intensive operations | | —————— Sequential CPU code
e —;
e
~10% of code S
e
EEm——— 2-
s
SRENGERSR ey
44444411 E—— ..
R R R R RS T
DHUERNENESN
SEENHEEES E————
SESSEEEES ..
Ty
AEETRESANR
SREEIRER

GPU Multi-core CPU

[. DR JEFF
CSUN S SOFTWARE
pCAonNI G P U oearronmomn

2016-2023
comp222 Quora

Each CUDA pipeline knows what to do through its unique thread-id

threadldx|{of1] 2] 3] 415]6]7
 ENEEEEE - :
000000 mtl—threadldxx ;

bllllllll % C[i]=A[i]+B[i];

e S

c llllllll
then they all finish a work much quicker than a serial code.

» Highly vectorized data
» Large Thread count

] DR JEFF
SOFTWARE

© Jeff Drobman
2016-2023

=2xi(k =1){n-1)

=iy
Yi ';x:exp(

N

].k e{l

= DR JEFF
CSUN 25 soFTWARE
mSuromIn G PU by fiariia

2016-2023
comp222 Quora

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

comp222 Quora

PowerVR Series6XTRogue

AR | 1 |
151§

&% DR JEFF
ﬂ SOFTWARE

© Jeff Drobman
2016-2023

PowerVR

\ DR JEFF
CSUN . 25 soFTWARE
T GPU Chiplets Sicfsrobme

NORTHRIDGE 2016-2023
The Long Road to GPU Chiplets

The concept of splitting GPUs into discrete blocks and aggregating them together on-package predates common usage of the word
“chiplet”, even though that’s what we’d call this approach today. Nvidia performed a study on the subject several years ago.

SMs + L1S

v N il
I i XBAR l(‘ ¥ sl XBAR N®
x> TN GPM '

Package

I_ — _Gp?na“l I-prsz " p— —I
bl & ke XBAR [T —v] XBAR || ¢ U
s N I T JEEEGES - 1
I | I I
I | I I
| SMs + L1S | | SMs + L1S |

Figure 3: Basic MCM-GPU architecture comprising four GPU
modules (GPMs).

g DR JEFF
CSUN Q SOFTWARE
INDIE APPDEVELOPER
STA?I'::LJZ?\?:;QITY I P U © Jeff Drobman
NORTHRIDGE 2016‘2023

comp222 Quora

‘ Kiryl Persianov
Here's a diagram of Google's TPU:

o DDR3 DRAM
14 GiB/s bccsag 30 GiB/s (Weight FIFO
<}:{>[mm]!:(}L (Weight Fetcher) |
o
©
* Matrix Multiply
Unit
14 GiB/s 35 14 GiB/s (w(p«cyca.)‘—
i R
Accumulators
2 . I- la
SE— i Normalize / Pool]
Dou-cupvo
[[] pata Butter
[[] computation
[contral
Not to Scale

At its core, you find something that inspired by the heart and not the brain. It's
called a “Systolic Array” described in 1982 in “Why Systolic Architectures 2'?":

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF
SOFTWARE

GPU Packaging aif

@ Luc Boulesteix ®
Updated April 11, 2020 - Upvoted by Thomas Martin, Computer Hardware Enthusiast

| wonder why this wasn't mentioned yet, but you used to be able to get NVIDIA chips in
apple products.

A couple years back, around 2008-2009, NVIDIA sold chips that had a critical flaw,
where the GPU would basically detach itself from the package/substrate. This was later
coined as "bumpgate”.

Graphics Processor Component Layers

Die
Underfill
Bumps

Substrate st BB SEH

Passivation

Image from Anandtech

Basically, NVIDIA changed the material used to connect the GPU die and substrate,
which had better properties overall, but had the downside of having lower conductivity,
meaning you need more of them to supply adequate power to the chip. NVIDIA didn't
see this coming, meaning these connections, called bumps, had a tendency to expand
more than expected under load, due to thermal expansion. This is obviously not good
on its own, but NVIDIA also used a very stiff underfill under their chips, which didn't
have appropriate deformation to absorb this bump expansion. This meant that these
critical connections had a tendency to simply break in half, severing electrical

P& DR JEFF
CSUN 25 soFTWARE
. C P U % G P U e

NORTHRIDGE 2016—2023
comp222 Quora

—r——

@ Georgios Deligiannoudis - Follow >
\ BEng in Computing, Edinburgh Napier University (Expected 2024) - Updated 2y

Related Why do some games use your CPU far more than your GPU?
A nice point to consider would be to think of what each part does.

How rendering works in a game is that the CPU prepares each frame, then the GPU does
additional processing on it.

Your CPU will mostly take care of physics, the positions and behaviour of different entities
(such as an enemy in a game) and hand all of that data over to the GPU. The GPU will then
do the heavier tasks of rendering and post-processing with it all. Here's some examples

from The Crew to illustrate.

DR JEFF

-
CSUN 25 soFTWARE
. . INDIEAPPDEVELOPER
STA(';II\ELLII :q(::f:xlzgnv ‘ P l ' 9 G P l | © Jeff Drobman
2016-2023

NORTHRIDGE

comp222 Quora

Below is the same frame but after the GPU has done all of its work.

Note the fact that lighting actually exists now, the skybox isn't missing, foliage quality is
higher, the different materials of each object are taken into account, light sources such as
the car's rear lights are acknowledged, textures are properly loaded, tesselation is used to
give textures a three-dimensional look, water appears in the image and has its own
interactions with light including reflections, and so on.

CSUN @A) sorrware
rChrona C P U 9 G P U S

COMP222 Quora 2016-2023

To put it plainly, games that require less work from the GPU to produce a frame will
inevitably mean that the CPU has to prepare more frames for the GPU to complete more
often, as the GPU doesn’t need to do as much. Thus, CPU usage will be higher, and the
game's performance will depend on the CPU more. This is also the reason why gaming on a
lower resolution or graphics settings increases how much performance will depend on your
CPU.

Other games that are *immensely* CPU intensive could be Turn-Based Strategy titles such
as Sid Meier'’s Civilization, where the actions of every nation excluding the player’s have to
be calculated almost entirely by the CPU. In such cases there are complex and advanced
decision making (and other) algorithms that need to be executed which rely solely on your
CPU and as such directly depend on it for performance.

DR JEFF

CSUN 252 soFTwARE
iR CPU % GPU O iaffbroman
2016-2023

NORTHRIDGE

comp222 Quora

A 5GHz CPU can compute the locations of a complex wireframe vertex array very quickly,
while a GPU has tools and storage specifically designed to render textures and lighting
effects to bring the wireframe to life.

It is a constant volley between the CPU and GPU, exchanging real-time data and flipping at
back and forth to each other. CPU creates vertex array—flips it to GPU. GPU renders frame
—notifies CPU when finished. CPU updates position and creates new vertex array—and so

on.

— DR JEFF

CSUN 25| soFTwARE
peaChuTonNIA (Pl | 9 G Pl | e
NORTHRIDGE 2016—2023

comp222 Quora

A CPU core can only nanaie one or Two tnreads per CIOCK cycle, wnile a GFU core can aiso
handle one thread per clock cycle. But when you link hundreds of them or thousands of
them together, each managing a small section of the task, the overall job of rendering a
screen of graphics is extremely quick. Rendering an image might require hundreds of steps
or stages in all. But when each step only takes a few hundred nanoseconds to compute,
the the 8-millisecond (8-million-nanosecond) frame time required for 120fps is very
achievable.

It just occurred to me that | left out the most interesting part. 3D rendering uses a
technique called DBSC. The double-buffer swap chain uses two frame buffers. One
frame buffer functions as a canvas so that the renderer can “paint” its picture. When the
picture is done, its image gets swapped to the monitor. The first frame buffer is erased and
the renderer goes to work painting the next picture. The buffers are swapped. One always
displays and image on the screen while the other is being processed.

CCALIFORNI : @ S?DD/EIJDEWTELAFOFZRRE
sATE DNV o Section ® Jeff Drobman

2016-2023
COMP222

GPU
CUDA

S DR JEFF

. SOFTWARE

e GPU Coding w/CUDA e oo
RRRRRRRRRR 2016-2023

comp222 Quora

0 Huseyin Tugrul Buyukisik - Follow
B.S. in Numerical Analysis, Physics Engineer

CUDA Core

Dispatch Port
Operand Collector

Result Queue

(@9 DR JEFF
. B soFTwaRE
N GPU Coding w/CUDA & e B

2016-2023
comMmp222 Quora

0 Huseyin Tugrul Buyukisik - Follow
B.S. in Numerical Analysis, Physics Engineer

Simple Processing Flow

[RENNRRARARAREN)

1. Copy input data from CPU memory
to GPU memory

2. Load GPU program and execute,
caching data on chip for
performance

CSUN

~.-Quora. GPU Coding w/CUDA

comp222 @

Huseyin Tugrul Buyukisik - Follow
B.S. in Numerical Analysis, Physics Engineer

Main
Memory

Copy the result

Memo
for GP

Execute parallel
in each core

Processing
flow on CUDA

CPU

Instruct the processing

DR JEFF
SOFTWARE
© Jeff Drobman

2016-2023

CSUN : B8 soFrware

~ums-Quora. GPU Coding w/CUDA oo

COMP222 @ Ui e e
CUDA Programmer's View of GPUs

A GPU contains muitiple SIMD Units. All of them can access global memory.

. { :

Reg | Reg 7
o d

(Sl\ared NLmory I Shared NLmory 1
L |

\

Reg

& =57 2 B
L | ¥ | L | L | L | Y X
Global Memory
|

With this coding style, write on a GTX480, run it on a RTX2080ti easily without changing
code, in CUDA. Also for OpenCL, you can write code on a development machine that has
AMD only, later can run it on an Nvidia machine easily.

A GPU is made of multiple “streaming multiprocessors". SIM D/S| MT
A streaming multiprocessor is made of multiple “warp schedulers”
Each warp scheduler run commands on multiple SIMD/SIMT units.

There are many SIMD/SIMT units per streaming multiprocessor.

DR JEFF
CSUN . 84 sorrware
~cues.Quora. GQPU Codin g W / CUDA & i Groiman
N Huseyin Tugrul Buyukisik - Follow 2016-2023
CO M P222 0 B.S. in Numerical Analysis, Physics Engineer

e Example: image processing pipeline

Pipeline for sRGB (JPEG)

Gain Control White
‘ ‘ A/D C_onverter - R b
Possible LUT

AFE — Analog Front End

Sensor with color filter array

(CCD/CMOS) Sensor related processing ‘
Color Space Noise G
Todne _ - Transform + ‘ Reduction/ - R .
REPrOCRCLicn Color Preferences Sharpening g

{

Saveto
JPEG - Exif File Info ‘ storage
Compression .

CSUN : B sorrware
ChTomy GPU Co d INg W / CUDA L ot

2016-2023
comp222 Quora

Karthikeyan Natarajan - Follow eee X
@®_ Works at NVIDIA - 3y

You can't run all of your python code in GPU. You have to write some parallel python code
to run in CUDA GPU or use libraries which support CUDA GPU.

Your best bet for rewriting custom code is Numba. GPU Accelerated Computing with
Python &

If it is for deep learning, use tensorflow, or pytorch or keras. Make sure to follow install
instructions for CUDA GPU. (I would suggest to use nvidia docker images).

If it is for machine learning and ETL, use RAPIDS 7.

CSUN : B sorrware
mCuroNs G PU Co d N g W / CUDA S mraien

2016-2023
comp222 Quora

” Huseyin Tugrul Buyukisik - Follow eee X
B.S. in Numerical Analysis, Physics Engineer (Graduated 2012) - Updated 1y

You have some options:
1- write a module in C++ (CUDA) and use its bindings in Python
2- use somebody else's work (who has done option 1)

3- write CUDA program in another language with some input/output. then call it from
python commandline (using subprocess, etc...) and giving it i/o within python environment.

4-(not suggested) write a python interpreter that uses CUDA natively

CSUN : 859 sorrware
< Quora. GPU Coding w/CUDA o o

Huseyin Tugrul Buyukisik - Follow 2016-2023
compr222 @ -

B.S. in Numerical Analysis, Physics Engineer

e Workitem-level parallelization

o Each workitem (CUDA thread, OpenCL workitem) computes its own
independent data. It's actually data parallelism.

o For emberrassingly parallel workloads

= Example: vector-vector addition c=a+b

1 Serial: clil] = alil +
b[i]
2 Parallel: c[threadId] — althreadId] +

b[threadId]

CSUN Quora di 858 soFrware
sTATE NV GPU Codin g W / CUDA ©ef Drobman

CO M P2 2 2 0 Huseyin Tugrul Buyukisik - Follow
B.S. in Numerical Analysis, Physics Engineer

Thread level
e Thread-block level parallelization

o Each block of workitems work on a shared resources to complete an
independent bigger work. Since each block can work independently from
others, its also task parallelism.

o For parallel workloads where some parts need to be synchronized at
certain intervals

= Example: reduction

Serial: sum = a[@] + al[1] + al[2] + al[3] + ... + al[N-1]
Parallel: for(unsigned int leap=n/2; n>0; n>>=1)
{
if(threadId<n)

sum[threadId]+=sum[threadId+leap];
barrier(); // or __syncthreads()

}

summation = sum[0]

OO U B WIN B

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

comMmp222 Quora

@ DR JEFF
23 soFTwARE

GPU Coding w/CUDA = s

2016-2023

For example, Numba for Python is option-2. It is simple to use:

OO0 NNOOULS WN -

[
S

11
12

13
14

15
16
17
18
19
20
21
22

from numba import cuda, float32

Controls threads per block and shared memory usage.
The computation will be done on blocks of TPBxTPB elements.
TPB = 16

@cuda.jit
def fast_matmul(A, B, C):

Define an array in the shared memory

The size and type of the arrays must be known at compile
time

sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

X, Yy = cuda.grid(2)

tx = cuda.threadIdx.x
ty = cuda.threadIdx.y
bpg = cuda.gridDim.x # blocks per grid

if x >= C.shape[@] and y >= C.shape[l]:
Quit if (x, y) is outside of valid C boundary
return

. 80| sOrrwARE
CSUN LS
mCuroNs G PU Co d N g W / CUDA SRET

2016-2023
comMmp222 Quora

24 # Each thread computes one element in the result matrix.

25 # The dot product is chunked into dot products of TPB-long
vectors.

26 tmp = 0.

27 for i in range(bpg):

28 # Preload data into shared memory

29 sA[tx, tyl = Alx, ty + i x TPB]

30 sB[tx, ty] = B[tx + i x TPB, yl

31

32 # Wait until all threads finish preloading

33 cuda.syncthreads()

34

35 # Computes partial product on the shared memory

36 for j in range(TPB):

37 tmp += sA[tx, jl x sB[j, tyl

38

39 # Wait until all threads finish computing

40 cuda.syncthreads()

CSUN . B sorrware
ChTomy GPU Co d INg W / CUDA L ot

2016-2023
comp222 Quora

You write a "kernel” code(and compile for GPU). Send it to GPU. Also send data to GPU.
Then call compiled kernel code on GPU with data attached to it. Then wait until it
completes. After that, you get results from GPU.

Something like this:

cudaMemcpy (gpuData, hostData, n, cudaMemcpyHostToDevice);
kernelIncrement<<<128,128>>>(gpuData);
cudaMemcpy(hostData, gpuData, n, cudaMemcpyDeviceToHost);

1 MY_API void kernelIncrement(int * data)

i {

3 int workItemId = threadIdx.x+blockIdx.x*blockDim.Xx;
4 data[workItemId]++;

5 }

6

7

8

Kernel here is a function that runs on each streaming pipeline of GPU (64-192 of such
pipelines make a SM unit “streaming multiprocessor”). If its about graphics acceleration,
kernel is called as “shader”. If it is computing it is “__kernel" or “kernel”. These are just
names of functions exposed to developers through APIs like OpenGL, OpenCL and CUDA.
Each so-called "GPGPU pipeline” of GPU runs this same code.

CSUN : 84 sorrware
e Quora. GPU Codin g W / CUDA &'eff brobran

: isi 2016-2023
CO M P2 2 2 0 Huseyin Tugrul Buyukisik - Follow
B.S. in Numerical Analysis, Physics Engineer

Hardware is composed of SIMD/SIMT units but APIs expose them to developers like multi-
core CPU so that its easier to write programs for developers. Normally on a CPU, you'd
need to write vectorized code (vectorized multiplications, vectorized branching,
vectorized nested branching...) which makes it hard to tune for each new architecture. But
APIls like Opencl and CUDA has online-compiling or jit-compiling capabilities that get your
"non-SIMD, scalar-simple” code and apply it onto SIMD/SIMT units as if they were
independent cores of a CPU(but actually they are pipelines sharing many things with other
pipelines). Nvidia's Volta microarchitecture has made more progress on making these
SIMD/SIMT pipelines even more independent of each other on hardware level.

CSUN D) sorrware
ChTomy GPU SOftwa re L ot

2016-2023
COMP222

Mats Petersson, Worked with AMD Hardware Virtualization ®
Answered Fri

You install a GPU driver, which probably contains some selection of APIs for graphics:
OpenGL, Vulkan, DirectX and compute: OpenCL and Cuda.

These API's are a way to build sets of operations for the GPU to perform - it could be as
simple as a list of triangles and a colour information, that will draw a cube (and by
rotating the view of that, we can make the cube spin).

Or a whole frame for a 3D Game, with many different objects, each with their individual
texture-mapping, bump mapping and lighting, and a "background”.

The drawing is done by a sequence of “drawcalls”, one for each "item"” in the frame -
just one for the spinning cube, with different parameters to indicate what angle the
cube should be at. In a game, you'd have one call for the monster walkng towards you,
one for each of the bullets you are firing off, one for each section of wall, the obstacles
you are hiding behind or having to navigate around, etc.

The information on what to draw will be fed to the GPU by storing the data and draw call
itself in the GPU memory or in main (aka host or CPU) memory, and informing the GPU
"Next, do this".

CSUN D) sorrware
ChTomy GPU SOftwa re L ot

2016-2023
COMP222

Modern GPUs allow "pixel shaders” and "fragment shaders", which is little snippets of
programs that run for each pixel being drawn or each "fragment” (typically a triangle),
and make modifications to that pixel or fragment. This allows the programmer a
freedom to do almost anything - as long as it doesn't take too long! :)

In among the draw calls will be “markers” or “signals”, which the GPU will signal back to
the CPU that "Ok, | got to this point” - this allows the driver to tell the application that
"Yup, done all the work to point X". This allows the application to “wait"” for the GPU to
finish stuff, but also to feed more work in before the GPU is finished.

For "compute” type tasks, there’'s a compiler and a language. Short (or long) bits of
code gets translated to machine code for the GPU and loaded into GPU memory, with,
and placed in the same type of memory as the draw-calls, with the data [or a reference
to where it can be found] - for example two large matrices of numbers to do some
calculations on. The GPU will then run that code supplied, and signal back when the
work is done (similar to graphics). This uses the same resources of the GPU as the
fragment shading - the only difference is that the result is not drawn onto the screen.

This is a VERY brief form of it. The driver package for a modern GPU contains tens of
megabytes of code, and are very, very complicated. It takes months or years to
understand how they work.

f DR JEFF
CSUN 24| soFTware
CALIFORNIA (P l l 4 INDIE APPDEVELOPER
STATE UNIVERSITY S © Jeff Drobman
NORTHRIDGE

2016-2023
COMP222

How does a GPU-enabled computer know to use the GPU while
a game is being played?

@ Jeff Drobman - just now

5. | am an expert witness for technology

how does any computer know which cores of any kind to use? Cores are assigned by an OS
when multitasking like in Windows or Linux or Mac OS. For games, | presume each game has
a "driver"” process responsible for core and thread assignment. Threads in CPU’s are also

handled automatically in hardware via MT/SMT. GPU'’s are "SIMD" style vector processors,
and data must be in parallel as vectors.

CSUN : 8 sorrware
sTATE U Section © Jeff Drobman

2016-2023
COMP222

GPU
P&H Ch 6, 9:

CSUN : B sorrware
~wme Parallel Processing: GPU — esfasm
COMP222 P&H Ch 6 COMP 122: Computer

Architecture and

. . . . Assembly Language
6.6 Introduction to graphics processing units s A

(This section concentrates on using GPUs for computing. To see how GPU computing combines with the traditional role of graphics
acceleration, see COD Appendix C (Graphics and Computing GPUs).)

Here are some of the key characteristics as to how GPUs vary from CPUs:

= GPUs are accelerators that supplement a CPU, so they do not need to be able to perform all the tasks of a CPU. This role allows them
to dedicate all their resources to graphics. It's fine for GPUs to perform some tasks poorly or not at all, given that in a system with
both a CPU and a GPU, the CPU can do them if needed.

» The GPU problems sizes are typically hundreds of megabytes to gigabytes, but not hundreds of gigabytes to terabytes.

These differences led to different styles of architecture:

= Perhaps the biggest difference is that GPUs do not rely on multilevel caches to overcome the long latency to memory, as do CPUs.
Instead, GPUs rely on hardware multithreading (COD Section 6.4 (Hardware multithreading)) to hide the latency to memory. That is,
between the time of a memory request and the time that data arrives, the GPU executes hundreds or thousands of threads that are
independent of that request.

» The GPU memory is thus oriented toward bandwidth rather than latency. There are even special graphics DRAM chips for GPUs that
are wider and have higher bandwidth than DRAM chips for CPUs. In addition, GPU memories have traditionally had smaller main
memories than conventional microprocessors. In 2013, GPUs typically have 4 to 6 GiB or less, while CPUs have 32 to 256 GiB. Finally,
keep in mind that for general-purpose computation, you must include the time to transfer the data between CPU memory and GPU
memory, since the GPU is a coprocessor.

= Given the reliance on many threads to deliver good memory bandwidth, GPUs can accommodate many parallel processors (MIMD)
as well as many threads. Hence, each GPU processor is more highly multithreaded than a typical CPU, plus they have more
processors.

CSUN . (@
e GPU Parallel Processing — esas

2016-2023
COMP222 P&H Ch 6 —

Hardware/Software Interface

Although GPUs were designed for a narrower set of applications, some programmers wondered if they could specify their
applications in a form that would let them tap the high potential performance of GPUs. After tiring of trying to specify their
problems using the graphics APIs and languages, they developed C-inspired programming languages to allow them to write
programs directly for the GPUs. An example is NVIDIA's CUDA (Compute Unified Device Architecture), which enables the
programmer to write C programs to execute on GPUs, albeit with some restrictions. COD Appendix C (Graphics and Computing

GPUs) gives examples of CUDA code. (OpenCL is a multi- company initiative to develop a portable programming language that
provides many of the benefits of CUDA.)

NVIDIA decided that the unifying theme of all these forms of parallelism is the CUDA Thread. Using this lowest level of parallelism
as the programming primitive, the compiler and the hardware can gang thousands of CUDA threads together to utilize the
various styles of parallelism within a GPU: multithreading, MIMD, SIMD, and instruction-level parallelism. These threads are
blocked together and executed in groups of 32 at a time. A multithreaded processor inside a GPU executes these blocks of
threads, and a GPU consists of 8 to 32 of these multithreaded processors.

@ DR JEFF
CSUN IQI SOFTWARE
peChrony S| |V| D oesrronmomn
NORTHRIDGE 2016—2023

Figure 6.6.1: Simplified block diagram of the datapath of a multithreaded SIMD Processor (COD Figure

6.9).

It has 16 SIMD lanes. The SIMD Thread Scheduler has many independent SIMD threads that it chooses from to run on this processor.

Instruction register

|
' T e, D,

|
'

| T |

i

¥

¥

I

I

[P

Y

SIMD Lanes
(Thread

%

Processors)

5

1Kx32

Regi- Reg | Reg | Reg | Reg

slers
1K =32

Reg Reg

1Kx32 | 1K= 32 1Kx32 [1Kx32 | 1K= 32 [1Kx32

Reg

1K= 32

Reg Reg Reg Reg Reg

1Kx32 [1Kx32 | 1Kx32 | 1K= 32 [1K= 32

Reg | Reg

1Kx32 | 1K= 32

Load
store
unit

Load
slore
unit

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

store
unit

store
unit

Load
store

Load
store
unit

Load
store
unit

Load
store
unit

Load
store
unit

store

unit unit

Load
store
unit

store
undt

t {

Address coalescing unit

| |

Interconnection network

1

U

Local Memory

64 KiB

To Global
Memory

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GPU Architecture

GPU

BIF

Bus Interface

SA, VLB, PCI, AGP, PClq)

GMC

Graphics Memory Controller

(VRAM, WRAM, MDRAM, DDR, GDDR, HBM)

PMU

Power Management
Unit

VPU

(de/compression of
MPEG2, Theora, VP8,
1.264, H.265, VP9, VC-1,
Daala)

DIF

Display Interface

Display controllers
RAMDACSs
HDMI audio
DP audio

(VGA, DVI, HDMI,
DisplayPort,
S«ideo,
Composite video,
Component video)
PHY:
(LVDS, TMDS)
EDID

¥ 444444 Ay

A VGABIOS

Compression unit

v (initialization)

Video Processing Unit -—

Video underlay ¢

GCA

Graphics and Compute Array

(a.k.a. 3D engine)
Pixel shaders & Vertex shaders or Unified shaders aka
Stream processors aka CUDA cores,
TMUs (Texture Mapping Units),
ROPs (Render Output Units),
L2 cache,
Geometry processors,

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

CSUN . (5 B
S Parallel Processing

NORTHRIDGE

COMP222 Wikipedia —

Die shot of the GF100 GPU found &
inside GeForce GTX 470 cards

Fig. 1. NVIDIA Fermi architecture 5]
Convention in figures: orange -
scheduling and dispatch; green -
execution; light blue -registers and
caches.

DR JEFF
SOFTWARE

CSUN

(l | INDIE APPDEVELOPER
CALIFORNIA

STATE UNIVERSITY P © Jeff Drobman
NORTHRIDGE 2016-2023

COMP222
Figure 6.6.4: Quick guide to GPU terms (COD Figure 6.12).

More descriptive | Closest old term Official CUDA/ Book definition
name outside of GPUs NVIDIA GPU term

P&H Ch 6 —

Vectorizable Vectorizable Loop A vectorizable loop, executed on the GPU, made
@ Loop up of one or more Thread Blocks (bodies of
& vectonized loop) that can execute In parallel.
o
g Body of Body of a Thread Block A vectorized loop executed on a muttithreaded
2 Vectorized Loop | (StripMined) SIMD Processor, made up of one or more threads
; Vectorized Loop of SIMD instructions, They can communicate via
o Local Memory.
0
g Sequence of One Iteration of CUDA Thread A vertical cut of a thread of SIMD Instructions

SIMD Lane a Scalar Loop corresponding 1o one element executed by one

Operations SIMD Lane, Result is stored depending on mask
and predicate register.

. A Thread of Thread of Vector Warp A traditional thread, but it contains just SIMD

g. SIMD Instructions Instructions that are executed on a multithreaded
=] Instructions SIMD Processor, Results stored depending on a
& perelement mask.

§ SIMD Vector Instruction | PTX Instruction A single SIMD instruction executed across SIMD
= Instruction Lanes.

Multithreaded (Multithreaded) Streaming A multithreaded SIMD Processor executes

SIMD Vector Processor Multiprocessor threads of SIMD instructions, independent of

Processor other SIMD Processors,

Thread Block Scalar Processor Giga Thread Assigns multiple Thread Blocks (bodies of

% Scheduler Engine vectonzed loop) to multithreaded SIMD

3 Processors.

2 SIMD Thread Thread scheduler Warp Scheduler Hardware unit that schedules and issues threads
E’ Scheduler in @ Multithreaded of SIMD instructions when they are ready to

& cpu execute, Includes a scoreboard to track SIMD

2 Thread execution,

SIMD Lane Vector lane Thread Processor A SIMD Lane executes the operations in a thread
of SIMD instructions on a single element, Results
stored depending on mask.

GPU Memory Main Memory Global Memory DRAM memory accessible by all multithreaded

g SIMD Processors in a GPU.

8

E Local Memory Local Memory Shared Memory Fast local SRAM for one multithreaded SIMD

§' Processor, unavailable to other SIMD Processors.

g SIMD Lane Vector Lane Thread Processor Registers In a single SIMD Lane allocated across
Registers Registers Registers a full thread block (body of vectorized loop).

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GPU

Figure 6.6.3: Similarities and differences
between multicore with Multimedia SIMD
extensions and recent GPUs (COD Figure 6.11).

’ DR JEFF
ﬂ SOFTWARE

© Jeff Drobman
2016-2023

P&H Ch 6 —

GPU

SIMD processors 4108 81to 16
SIMD lanes/processor 2104 8o 16
Mukithreading hardware support for SIMD threads 2104 1610 32
Largest cache size 8 MiB 0.75 MiB
Size of memory address 64-bit 64-bit
Size of main memory 8 GIB to 256 GiB 4GB 106 GIB
Memory protection at level of page Yes Yes
Demand paging Yes No
Cache coherent Yeos No

@' DR JEFF
CSUN |§| SOFTWARE
T GPU Ly
NORTHRIDGE 2016‘2023
COMP222
P&H Ch 9 ——
Why CUDA and GPU computing?

This uniform and scalable array of processors invites a new model of programming for the GPU. The large amount of floating-point
processing power in the GPU processor array is very attractive for solving nongraphics problems. Given the large degree of parallelism and
the range of scalability of the processor array for graphics applications, the programming model for more general computing must express
the massive parallelism directly, but allow for scalable execution.

GPU computing is the term coined for using the GPU for computing via a parallel programming language and API, without using the
traditional graphics API and graphics pipeline model. This is in contrast to the earlier General Purpose computation on GPU (GPGPU)
approach, which involves programming the GPU using a graphics AP| and graphics pipeline to perform nongraphics tasks.

GPU computing: Using a GPU for computing via a parallel programming language and API.

GPGPU: Using a GPU for general-purpose computation via a traditional graphics API and graphics pipeline.

Compute Unified Device Architecture (CUDA) is a scalable parallel programming model and software platform for the GPU and other parallel
processors that allows the programmer to bypass the graphics APl and graphics interfaces of the GPU and simply program in C or C++.
The CUDA programming model has an SPMD (single-program multiple data) software style, in which a programmer writes a program for
one thread that is instanced and executed by many threads in parallel on the multiple processors of the GPU. In fact, CUDA also provides a
facility for programming multiple CPU cores as well, so CUDA is an environment for writing parallel programs for the entire heterogeneous
computer system.

CUDA: A scalable parallel programming model and language based on C/C++. It is a parallel programming platform for GPUs and
multicore CPUs.

gran DR JEFF
CSUN Q SOFTWARE
A s GPU & 5 Srobrnan
NORTHRIDGE 2016—2023

COMP222 P&H Ch 9

GPU unifies graphics and computing

With the addition of CUDA and GPU computing to the capabilities of the GPU, it is now possible to use the GPU as both a graphics
processor and a computing processor at the same time, and to combine these uses in visual computing applications. The underlying
processor architecture of the GPU is exposed in two ways: first, as implementing the programmable graphics APIls, and second, as a
massively parallel processor array programmable in C/C++ with CUDA.

Although the underlying processors of the GPU are unified, it is not necessary that all of the SPMD thread programs are the same. The GPU
can run graphics shader programs for the graphics aspect of the GPU, processing geometry, vertices, and pixels, and also run thread
programs in CUDA.

The GPU is truly a versatile multiprocessor architecture, supporting a variety of processing tasks. GPUs are excellent at graphics and visual
computing as they were specifically designed for these applications. GPUs are also excellent at many general-purpose throughput
applications that are "first cousins” of graphics, in that they perform a lot of parallel work, as well as having a lot of regular problem
structure. In general, they are a good match to data-parallel problems (see COD Chapter 6 (Parallel Processor from Client to Cloud)),
particularly large problems, but less so for less regular, smaller problems.

GPU visual computing applications

Visual computing includes the traditional types of graphics applications plus many new applications. The original purview of a GPU was
"anything with pixels,’ but it now includes many problems without pixels but with regular computation and/or data structure. GPUs are
effective at 2D and 3D graphics, since that is the purpose for which they are designed. Failure to deliver this application performance would
be fatal. 2D and 3D graphics use the GPU in its "graphics mode,” accessing the processing power of the GPU through the graphics APIs,
OpenGL™, and DirectX™. Games are built on the 3D graphics processing capability.

Beyond 2D and 3D graphics, image processing and video are important applications for GPUs. These can be implemented using the
graphics APls or as computational programs, using CUDA to program the GPU in computing mode. Using CUDA, image processing is
simply another data-parallel array program. To the extent that the data access is regular and there is good locality, the program will be
efficient. In practice, image processing is a very good application for GPUs. Video processing, especially encode and decode (compression
and decompression according to some standard algorithms), is quite efficient.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GPU

gre DR JEFF
lgl SOFTWARE

© Jeff Drobman
2016-2023

P&RHCh 9 —

Figure 9.2.1: Historical PC (COD Figure C.2.1).

VGA controller drives graphics display from framebuffer memory.

CPU

1 Front Side Bus

North
Bridge Baad Memory
t PCl Bus

South
Bridge

:

;

LAN

UART

VGA
_C':]

Framebuffer
Memory

g DR JEFF
CSUN |Ql SOFTWARE
T GPU by i
COMP222 2016-2023
P&H Ch 9 ——
Figure 9.2.2: Contemporary PCs with Intel and AMD CPUs (COD Figure C.2.2).

See COD Chapter 6 (Parallel Processor from Client to Cloud) for an explanation of the components and interconnects in this figure.

Intel
CPU
1 Front side B
roni us
x16 PCI-Express Link A
North DDR2
: -
display Bridge Memory
t x4 PCIl-Express Link 4 128-bit
derivative y 667 MT/s
GPU
South
M <
ot Bridge
(a)
AMD
CPU
CPU
core
Iy 128-bit
DASTAM i & 667 MT/s
North _| DDR2
Bridge Memory
\

x16 PCI-Express Link ¢ HyperTransport 1.03

- Chipset
display

GPU
Memory

(b)

(G DR JEFF
CSUN IQI SOFTWARE
. GPU 8o Brobman
NORTHRIDGE

COMP222 P&H Ch 9

PCI-Express (PCle): A standard system |/0 interconnect that uses point-to-point links. Links have a configurable number of lanes and
bandwidth.

A low-cost variation on these systems, a unified memory architecture (UMA) system, uses only CPU system memory, omitting GPU memory
from the system. These systems have relatively low performance GPUs, since their achieved performance is limited by the available system
memory bandwidth and increased latency of memory access, whereas dedicated GPU memory provides high bandwidth and low latency.

Unified memory architecture (UMA): A system architecture in which the CPU and GPU share a common system memory.

A high performance system variation uses multiple attached GPUs, typically two to four working in parallel, with their displays daisy-

chained. An example is the NVIDIA SLI (scalable link interconnect) multi-GPU system, designed for high performance gaming and
workstations.

The next system category integrates the GPU with the north bridge (Intel) or chipset (AMD) with and without dedicated graphics memory.

(@S DR JEFF
CSUN |§| SOFTWARE
T GPU b Ch O O e Srovman
Graphics logical pipeline
The graphics logical pipeline is described in COD Section C.3 (Programming GPUs). The figure below illustrates the major processing

stages, and highlights the important programmable stages (vertex, geometry, and pixel shader stages).

Figure 9.2.3: Graphics logical pipeline (COD Figure C.2.3).

Programmable graphics shader stages are blue, and fixed-function blocks are white.

Input Vertex Geometry i Setup & s Pixel 5] Raster Operations/
Assembler Shader Shader Rasterizer Shader Output Merger

Figure 9.2.4: Logical pipeline mapped to physical processors (COD Figure C.2.4).

The programmable shader stages execute on the array of unified processors, and the logical graphics pipeline dataflow recirculates
through the processors.

Input
Assembler

Setup &

(Rasterizer

Raster Operations/
Output Merger

@ DR JEFF
CSUN IQI SOFTWARE
pCuroma GPU Jueesenaiionm
NORTHRIDGE P&H Ch 9 2016-2023
Figure 9.2.5: Basic unified GPU architecture (COD Figure C.2.5).

Example GPU with 112 streaming processor (SP) cores organized in 14 streaming multiprocessors (SMs); the cores are highly
multithreaded. It has the basic Tesla architecture of an NVIDIA GeForce 8800. The processors connect with four 64-bit-wide DRAM
partitions via an interconnection network. Each SM has eight SP cores, two special function units (SFUs), instruction and constant
caches, a multithreaded instruction unit, and a shared memory.

o ST
GPU
| Host Intarface ll . J
Viewpor Clip/ p SM
Setup'Raster/ ’
Input Assembler 2Cul A '-cme
1 |
Vertex Work Pixel Work Compute Work ,I MT '33“3

Interconnection Network

| 1 | | 1 1 1 1 1
For]] [For)] (o (] (e [T [y oo |
e e e e e F—
DRAM DRAM DRAM DRAM . Display

DR JEFF
CSUN ﬂ SOFTWARE
A s GPU & 5 Srobrnan
NORTHRIDGE

COMP222 P&H Ch 9

9.3 Programming GPUs [Present B Note

(Original section’)

Programming multiprocessor GPUs is qualitatively different than programming other multiprocessors like multicore CPUs. GPUs provide
two to three orders of magnitude more thread and data parallelism than CPUs, scaling to hundreds of processor cores and tens of
thousands of concurrent threads. GPUs continue to increase their parallelism, doubling it about every 12 to 18 months, enabled by Moore's
law [1965] of increasing integrated circuit density and by improving architectural efficiency. To span the wide price and performance range
of different market segments, different GPU products implement widely varying numbers of processors and threads. Yet users expect
games, graphics, imaging, and computing applications to work on any GPU, regardless of how many parallel threads it executes or how
many parallel processor cores it has, and they expect more expensive GPUs (with more threads and cores) to run applications faster. As a
result, GPU programming models and application programs are designed to scale transparently to a wide range of parallelism.

The driving force behind the large number of parallel threads and cores in a GPU is real-time graphics performance—the need to render
complex 3D scenes with high resolution at interactive frame rates, at least 60 frames per second. Correspondingly, the scalable
programming models of graphics shading languages such as Cg (C for graphics) and HLSL (high-level shading language) are designed to
exploit large degrees of parallelism via many independent parallel threads and to scale to any number of processor cores. The CUDA
scalable parallel programming model similarly enables general parallel computing applications to leverage large numbers of parallel
threads and scale to any number of parallel processor cores, transparently to the application.

In these scalable programming models, the programmer writes code for a single thread, and the GPU runs myriad thread instances in
parallel. Programs thus scale transparently over a wide range of hardware parallelism. This simple paradigm arose from graphics APIs and
shading languages that describe how to shade one vertex or one pixel. It has remained an effective paradigm as GPUs have rapidly
increased their parallelism and performance since the late 1990s.

@% DR JEFF
CSUN 3 IQI SOFTWARE
CALIFORNIA P U @INfgf}PEL;-EOVEI;;PaE;
2016-2023

NORTHRIDGE

COMP222 P&H Ch 9

Programming real-time graphics

APls have played an important role in the rapid, successful development of GPUs and processors. There are two primary standard graphics
APls: OpenGL and Direct3D, one of the Microsoft DirectX multimedia programming interfaces. OpenGL, an open standard, was originally
proposed and defined by Silicon Graphics Incorporated. The ongoing development and extension of the OpenGL standard [Segal and
Akeley, 2006), [Kessenich, 2006] is managed by Khronos, an industry consortium. Direct3D [Blythe, 2006], a de facto standard, is defined and
evolved forward by Microsoft and partners. OpenGL and Direct3D are similarly structured, and continue to evolve rapidly with GPU hardware
advances. They define a logical graphics processing pipeline that is mapped onto the GPU hardware and processors, along with

programming models and languages for the programmable pipeline stages.

OpenGL: An open-standard graphics API.

Direct3D: A graphics API defined by Microsoft and partners.

CSUN B4 soFrware

CALIFORNIA ‘ l |
STATE UNIVERSITY P © Jeff Drobman
NORTHRIDGE

COMP222 P&H Ch 9

Texture: A 1D, 2D, or 3D array that supports sampled and filtered lookups with interpolated coordinates.

Figure 9.3.1: Direct3D 10 graphics pipeline (COD Figure C.3.1).

Each logical pipeline stage maps to GPU hardware or to a GPU processor. Programmable shader stages are blue, fixed-function blocks
are white, and memory objects are gray. Each stage processes a vertex, geometric primitive, or pixel in a streaming dataflow fashion.

I

I Input - Geometry . | Setup & ~ Pixel -~ Raster Operations/ | '
;| Assembler Shader " | Rasterizer Shader Output Merger !
ey 1 \ . / A A :
! Sampler S‘gjm Sampler I
:_ A GPU A I
I----- ------- e o = i At e e e e A e Rk e, el i _"|
1 | Vertex Stream Depth Render | |
1 | Butter i [Buffer e Z8uffr] | | Target |
| [indexBuffer] [Constant | [Constant | [Constant] [“Stenci | !

@% DR JEFF
CSUN 3 IQI SOFTWARE
CALIFORNIA P U @INfgf}PEL;-EOVEI;;PaE;
2016-2023

NORTHRIDGE

COMP222 P&H Ch 9

The CUDA paradigm

CUDA is a minimal extension of the C and C++ programming languages. The programmer writes a serial program that calls parallel kernels,
which may be simple functions or full programs. A kernel executes in parallel across a set of parallel threads. The programmer organizes
these threads into a hierarchy of thread blocks and grids of thread blocks. A thread block is a set of concurrent threads that can cooperate
among themselves through barrier synchronization and through shared access to a memory space private to the block. A grid is a set of
thread blocks that may each be executed independently and thus may execute in parallel.

Kernel: A program or function for one thread, designed to be executed by many threads.

Thread block: A set of concurrent threads that execute the same thread program and may cooperate to compute a result.

Grid: A set of thread blocks that execute the same kernel program.

When invoking a kernel, the programmer specifies the number of threads per block and the number of blocks comprising the grid. Each
thread is given a unique thread ID number threadIdx within its thread block, numbered @, 1, 2, . . ., blockDim-1, and each thread block
is given a unique block ID number blockIdx within its grid. CUDA supports thread blocks containing up to 512 threads. For convenience,
thread blocks and grids may have 1, 2, or 3 dimensions, accessed via . X, .y, and . z index fields.

DR JEFF
CSUN E SOFTWARE
peChrony G P U oesrronmomn
NORTHRIDGE 2016—2023
COMP222
P&HCh9 ——

Programming parallel computing applications

CUDA, Brook, and CAL are programming interfaces for GPUs that are focused on data parallel computation rather than on graphics. CAL
(Compute Abstraction Layer) is a low-level assembler language interface for AMD GPUs. Brook is a streaming language adapted for GPUs
by Buck et al. [2004]. CUDA, developed by NVIDIA [2007), is an extension to the C and C++ languages for scalable parallel programming of
manycore GPUs and multicore CPUs. The CUDA programming model is described below, adapted from an article by Nickolls et al. [2008].

With the new model the GPU excels in data parallel and throughput computing, executing high performance computing applications as well
as graphics applications.

Data parallel problem decomposition

To map large computing problems effectively to a highly parallel processing architecture, the programmer or compiler decomposes the
problem into many small problems that can be solved in parallel. For example, the programmer partitions a large result data array into
blocks and further partitions each block into elements, such that the result blocks can be computed independently in parallel, and the
elements within each block are computed in parallel. The figure below shows a decomposition of a result data array into a 3 x 2 grid of
blocks, where each block is further decomposed into a 5 x 3 array of elements. The two-level parallel decomposition maps naturally to the
GPU architecture: parallel multiprocessors compute result blocks, and parallel threads compute result elements.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GPU

Figure 9.3.3: Decomposing result data into a
grid of blocks of elements to be computed in
parallel (COD Figure C.3.3).

Sequence
Step 1:

Step 2:

P&HCh9 —

Result Data Grid 1

T

P f \
’, ’, \

4
7 / \

\
\

Result Data Grid 2

, : '

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

' DR JEFF
CSUN IQI SOFTWARE
peChrony G P U oesrronmomn
NORTHRIDGE 2016—2023
COMP222 P&H Ch 9

Figure 9.3.4: Sequential code (top) in C versus parallel code (bottom) in CUDA for SAXPY (see COD
Chapter 6 (Parallel Processor from Client to Cloud)) (COD Figure C.3.4).

CUDA parallel threads replace the C serial loop—each thread computes the same result as one loop iteration. The parallel code
computes n results with n threads organized in blocks of 256 threads.

Computing y = ax + y with a serial loop:

void saxpy_serial(int n, float alpha, float *x, float *y)
!
for(int i = 0; i<n; ++i)
y[il = alpha*x[i] + y[il;

}
// Invoke serial SAXPY kernel
saxpy_serial(n, 2.0, x, y):

Computing y = ax + y in parallel using CUDA:

- ‘global. .
void saxpy_parallel(int n, float alpha, float *x, float *y)
!

int i = blockIdx.x*blockDim.x + threadIdx.x;

if(i<n) y[i] = alpha*x[i] + y[i];
f

// Invoke parallel SAXPY kernel (256 threads per block)
int nblocks = (n + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, ¥);:

gre DR JEFF
CSUN 3 lgl SOFTWARE
CALIFORNIA P U @)INfgf}'PEL;-EOVE%PaE;
2016-2023

NORTHRIDGE

COMP222 P&H Ch 9

Atomic memory operation: A memory read, modify, write operation sequence that completes without any intervening access.

Threads may access data from multiple memory spaces during their execution. Each thread has a private local memory. CUDA uses local
memory for thread-private variables that do not fit in the thread's registers, as well as for stack frames and register spilling. Each thread
block has a shared memory, visible to all threads of the block, which has the same lifetime as the block. Finally, all threads have access to
the same global memory. Programs declare variables in shared and global memory with the __shared__and __device__ type
qualifiers. On a Tesla architecture GPU, these memory spaces correspond to physically separate memories: per-block shared memory is a
low-latency on-chip RAM, while global memory resides in the fast DRAM on the graphics board.

Local memory. Per-thread local memory private to the thread.
Shared memory: Per-block memory shared by all threads of the block.

Global memory. Per-application memory shared by all threads.

Shared memory is expected to be a low-latency memory near each processor, much like an L1 cache. It can therefore provide high-
performance communication and data sharing among the threads of a thread block. Since it has the same lifetime as its corresponding
thread block, kernel code will typically initialize data in shared variables, compute using shared variables, and copy shared memory results
to global memory. Thread blocks of sequentially dependent grids communicate via global memory, using it to read input and write results.

asa DR JEFF
CSUN IQI SOFTWARE
peChrony G P U oesrronmomn
NORTHRIDGE 2016—2023
COMP222
P&HCh9 ——

Figure 9.3.5: Nested granularity levels—thread, thread block, and grid—have corresponding memory
sharing levels—local, shared, and global (COD Figure C.3.5).

Per-thread local memory is private to the thread. Per-block shared memory is shared by all threads of the block. Per-application global
memory is shared by all threads.

Thread

<—| per-Thread Local Memory |

Thread Block

SESSSS per-Block

S5 Shared Memo

Ry »l ry

Clcccccecc

VIPPIIIIiiY

Grid0 —

ﬁ : ?é ::"‘ R »»)»»;-

SAY

— — — Inter-Grid Synchronization — — — Global Memory

asa DR JEFF
CSUN IQI SOFTWARE
peChrony G P U oesrronmomn
NORTHRIDGE 2016—2023
COMP222
P&HCh9 ——

Single-program multiple data (SPMD): A style of parallel programming model in which all threads execute the same program. SPM|
threads typically coordinate with barrier synchronization.

Figure 9.3.6: Sequence of kernel F (COD Figure C.3.6).

Sequence of kernel F instantiated on a 2D grid of 2D thread blocks, an interkernel synchronization barrier, followed by kernel G on a 1D
grid of 1D thread blocks.

Sequence kernelF 2D Grid is 3 x 2 thread blocks; each block is 5 x 3 threads

Block 1,0 | Block2,0 |
S5SNI ;

Precssaaans

>) 222

kernel F<<L(3, 2), (5, 3)>>>(params);

Block 1,1

[Thread0.0 | Thread 1,0 | Thread2.0 | Thread 3,0 | Thread 4,0

]

Thread 0,1 | Thread 1,1 | Thread2.1 | Thread 3,1 | Thread 4, 1

i3

Thread 0,2 | Thvead 1,2 | Thread2,.2 | Thread 3,2 | Thread 4, 2

I I I I

a9 DR JEFF
CSUN 84 soFrware
CALIFORNIA P @INfgf}PEL;-EO‘/EI;?’PaE;
RRE GPU

COMP222 P&H Ch 9

Massive multithreading

GPU processors are highly multithreaded to achieve several goals:

Cover the latency of memory loads and texture fetches from DRAM

Support fine-grained parallel graphics shader programming models

Support fine-grained parallel computing programming models

Virtualize the physical processors as threads and thread blocks to provide transparent scalability
Simplify the parallel programming model to writing a serial program for one thread

@ DR JEFF
CSUN |ﬂ| SOFTWARE
T GPU by i
NORTHRIDGE 2016‘2023
COMP222 P&H Ch 9
Figure 9.4.1: Multithreaded multiprocessor with eight scalar processor (SP) cores (COD Figure C.4.1).

The eight SP cores each have a large multithreaded register file (RF) and share an instruction cache, multithreaded instruction issue
unit, constant cache, two special function units (SFUs), interconnection network, and a multibank shared memory.

Multithreaded Multiprocessor
Instruction Cache
Multithreaded Instruction Unit - e
|
Constant Cache Work Interface
SFU SFU
Input
[Interface
(Interconnection Network) |
| Output
Interface
Texture
Shared Memory Interface
Memory
Interface

(G DR JEFF
CSUN IQI SOFTWARE
. GPU 8o Brobman
2016-2023

NORTHRIDGE

COMP222 P&H Ch 9

Single-instruction multiple-thread (SIMT)

To manage and execute hundreds of threads running several different programs efficiently, the multiprocessor employs a single-instruction
multiple-thread (SIMT) architecture. It creates, manages, schedules, and executes concurrent threads in groups of parallel threads called
warps. The term warp originates from weaving, the first parallel thread technology. The photograph in the figure below shows a warp of
parallel threads emerging from a loom. This example multiprocessor uses a SIMT warp size of 32 threads, executing four threads in each of
the eight SP cores over four clocks. The Tesla SM multiprocessor described in COD Section C.7 (Real stuff: The NVIDIA GeForce 8800) also
uses a warp size of 32 parallel threads, executing four threads per SP core for efficiency on plentiful pixel threads and computing threads.

Thread blocks consist of one or more warps.

Single-instruction multiple-thread (SIMT): A processor architecture that applies one instruction to multiple independent threads in
parallel.

Warp: The set of parallel threads that execute the same instruction together in a SIMT architecture.

@ DR JEFF
CSUN |§| SOFTWARE
TR GPU i
COMP222 2016-2023
P&H Ch 9 —
Figure 9.4.2: SIMT multithreaded warp scheduling (COD Figure C.4.2).

The scheduler selects a ready warp and issues an instruction synchronously to the parallel threads composing the warp. Because
warps are independent, the scheduler may select a different warp each time.

Phote: Judy Schoonmaker

SIMT multithreaded
instruction scheduler

time
| S N N o IS e B odl I)) BN [B IR |

warp 8 instruction 11
B EERAREED EE AR

N

| B D B el B) NS o G] Dol)) DN
warp 3 instruction 95
7 R TR R D R SRR P B A%]

B BN
I P e) I I P B) T Y e o L

warp 8 instruction 12
 EEREEEEEEEREERER]
1)1

|25) Dol I [o o B2 I P [il
warp 3 instruction 96
EEET B EEENEEEEEE:

| [e

DR JEFF

CSUN SOFTWARE

INDIE APPDEVELOPER
T GPU O Erabrman
NORTHRIDGE 2016‘2023
COMP222

P&H Ch 9
Figure 9.4.3: Basic PTX GPU thread instructions (COD Figure C.4.3).

Basic PTX GPU Thread Instructions

mmm

arithmetic .type = .s32. .u3?
add.type add.f32 d a, b d=a+b;
sub.type sub.f32:d, a;-b d=a - b;
mul.type mul.f32 d, a. b | de="a*= b3
rhad.type mad.f32 d, 2,.:05 ¢ d=a*b+c; multiply-add
div.type div.f32 d, a, b d=a/ b multiple microinstructions
rem.type rem.u32 d, a, b d=a % b; integer remainder
abs.type labs.f32 d, a d - |a];
Artthmetio neg.lype ‘neg.f32 d, a |d =0 - a;
min.type min,f32 d a, b d=(a < b)? a:b; floating selects non-NaN
max.type max.f32 d, a. b d=(a >Db)? a:b; floating selects non-NaN
setp.cmp.type setp.1t.f32 p, a, b p=(a <b); compare and set predicate
numeric .cmp=¢eq, ne, 1t, le, gt, ge;unordered cmp=equ, neu, 1tu, leu, gtu, geu, num, nan
_mov.type mov.b32 d, a |0 = a; move
selp.type selp.f32 d, a, b, p d p? a: b; select with predicate
cvt.dtype.atype lcve.f32.532 d, a d convert(a); convert atype 1o dtype
special .type = . 737 (some . f64)
rep.type 7rcp.f32 d, a d 1/a; reciprocal
sqrt.type sqrt.f32 d, a d = sgrt(a); square root
Special rsqrt.type rsqrt.f32 d, a d 1/sqrt(a); reciprocal square root
Function | sin.type sin.f32 d, a |d = sin(a); sine
cos.type cos.f32 d, a d cos(a); cosine
1g2.type 1g2.f32 d, a d log(a)/log(2) binary logarithm
ex2.type |ex2.f32 d, a gl w2k s binary exponential

CSUN

CALIFORNIA

GPU

] DR JEFF
SOFTWARE

INDIE APPDEVELOPER

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016-2023
COMP222 P&H Ch 9
logic. type = .pred, .b32, .bb64
and.type and.b32 d, a, b d=2a&b;
or.type or.b32 d, a, b d=-a | b;
Logical xor.type xor.b32 d. a. b a-m N s
not.type not.b32 d, a, b d= ~3; one's complement
cnot.type cnot.b32 d, a, b |d = (a==0)? 1:0;: C logical not
shi.type sh1.b32 d, a, b d = a << b; shift left
shr.type shr.s32 d, a, b d=-a > b; shift right
memory .space = .global, .shared, .local, .const; .type= .b8, .uB8, .s8, .bl6, .b32, .bb64
Id.space.type Id.global.b32 d, [a+off) d = *(a+off); load from memory space
P st.space.type st.shared.b3?2 [d+off], a *(d+off) = a: store to memory space
AcGAas tex.nd.dtypebtype |tex.2d.v4.f32.f32 d, a, b d = tex2d(a, b); texture lookup
atom.spc.op.type |atom.global.add.u32 d,[a]), b atomic { d = *a; atomic read-modify-write
atom.global.cas.b32 d,[al. b, *a = op(*a, b); | |operation
atom .op =and, or, xor, add, min, max, exch, cas; .spc= .global; .type=.b32
branch @ bra target if (p) goto conditional branch
target;
Control | call call (ret), func, (params) ret = func(params): |call function
Flow ret ret return; return from function call
bar.sync bar.sync d wait for threads barrier synchronization
exit exit exit; terminate thread execution

&r'?s! DR JEFF
CSUN Q SOFTWARE
A s GPU & 5 Srobrnan
NORTHRIDGE

COMP222 P&H Ch 9 2016-2023

Figure 9.6.1: Special function approximation
statistics (COD Figure C.6.1).

For the NVIDIA GeForce 8800 special function unit (SFU).

Input Accuracy ULP % exactly
interval (good bits) rounded

(1,2) 24.02
1/sqrtix) ' (1, 4) ' 23.40 1.52 78 Yes
[0, 1) 2251 141 74 Yes
log, X | w2 | 2287 NAT L NJA | Yes
sin/cos . 0, =/2) . 22.47 N/A N/A . No

"ULP: unit in the 1ast place.”"N/A: not applicable,

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GPU

gra DR JEFF
Q SOFTWARE

© Jeff Drobman

PRHChO .

Figure 9.6.2: Double precision fused-multiply-add (FMA) unit (COD Figure

C.6.2).

Hardware to implement floating-point A x B + C for double precision.

Inversion

Complementer

\

i

Normalizer

2%

CSUN (s Rt
peCauronIy G P U Memo ry Jepaian
NORTHRIDGE 2016—2023

COMP222 P&H Ch 9

MMU

Modern GPUs are capable of translating virtual addresses to physical addresses. On the GeForce 8800, all processing units generate
memory addresses in a 40-bit virtual address space. For computing, load and store thread instructions use 32-bit byte addresses, which are
extended to a 40-bit virtual address by adding a 40-bit offset. A memory management unit performs virtual to physical address translation;
hardware reads the page tables from local memory to respond to misses on behalf of a hierarchy of translation lookaside buffers spread
out among the processors and rendering engines. In addition to physical page bits, GPU page table entries specify the compression
algorithm for each page. Page sizes range from 4 to 128 kilobytes.

ROP

As shown in COD Figure C.2.5 (Basic unified GPU architecture), NVIDIA Tesla architecture GPUs comprise a scalable streaming processor
array (SPA), which performs all of the GPU's programmable calculations, and a scalable memory system, which comprises external DRAM
control and fixed function Raster Operation Processors (ROPs) that perform color and depth framebuffer operations directly on memory.
Each ROP unit is paired with a specific memory partition. ROP partitions are fed from the SMs via an interconnection network. Each ROP is
responsible for depth and stencil tests and updates, as well as color blending. The ROP and memory controllers cooperate to implement
lossless color and depth compression (up to 8:1) to reduce external bandwidth demand. ROP units also perform atomic operations on
memory.

CSUN : B sorrware
sATE DNV o Section ® Jeff Drobman

2016-2023
COMP222

GPU Products
Apple

3 DR JEFF
CSUN &%) soFTwARE
STATE UNIVERSITY) Jeff Drobmar

A pp | e M1 esrpoeiionen
2016-2023

COMP222 November 10, 2020

8-core | Up to 8 cores
GPU 128 execution unit:

B) : i
ICUINrent tnreads

P DR JEFF
852! soFTwaRE
A PP I e M1 oo

2016-2023

CALIFORNIA
STATE UNIVERSITY

COMP222 November 10, 2020

GPU Performance vs. Power

Latest PC
laptop chip

CSUN

CALIFORNIA

STATE UNIVERSITY
NORTHRIDGE

COMP222

November 10, 2020

Fabric

© Jeff Drobman
2016-2023

Unified memory architecture

—

Neural
™ Engine

High bandwidth, low latency
Apple-designed package
Accessible to entire SoC

EFF
CSUN B sorrware
Apple M1 Pro

COMP222

Bl] | 16-core GPU

iz =1IE1EIEIEIE % % [2048 execution units

***** il imi imi imi iwi i —]I[[Up to 49,512 concurrent threads

| L i 5.2 teraflops

. | 1) 1 (] AL ot 164 gigatexels/second

[

[T

| , 3 — -
| [|LLLLL 1=1=E1=E1E1I=E1E - E— 82 gigapixels/second
— : ¥ = | B s = ‘f ¥ N

HEEEN

CSUN B8 sorrware
A oJo le M1 Pro O i Brobmman

2016-2023
COMP222

oy S
ﬁmﬂl"_‘_‘_I-

ﬂhlllml;: Ju IR

1,490 WNZN ¥1) @

32GB unified memory
High bandwidth, low latency
256-bit LPDDRb5 interface
Apple-designed custom package

CSUN B soFrware
eSO A pp le M1 Max O eff Brobmman

2016-2023
COMP222
"M’| MAX I 32-core GPU
= % = (= = =] =) = % 4096 execution units
H HH i N Up to 98,304 concurrent threads
o | | i
,,,,,, J = =l 10.4 teraflops
1_ 1 —H o] (= (] (] = = — ”m“”m 327 gigatexels/second
— T = W] Eﬁg:gﬁ 164 gigapixels/second
==l ‘ | M
=== aun 0| (0| N [0 8 . I
]“— }_‘1 }i :Z] % = == AT
=1l \ e
=== | (8] (O | | siji= =0
i SIEIEIEIEE 2 H
ANl R
| =] Eas

l

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Unified
memory

Unified
memory

Apple M1 Max

asa DR JEFF
ﬂ SOFTWARE

© Jeff Drobman
2016-2023

@M1 MAX

[l

”m T

s|5lele

1

101
R T T

LIl

——

|
IRNERRRRRR =
[T

[T1T1] Iil [s{a[sialurs]

T 1
s (0
1
LT

1

L1
1

{upulu]sjalujujulalaiainiiulugulalaialafululule[alafuys(sla]
CEOEOEONOREEEAE BOR0E0EREE00BEA)

IHNNRNEEEN

[ERERAE;

Unified
memory

CSUN 83 soFrware
eSO A PP le M1 Max O i robmman

2016-2023
COMP222

U0 e D0 a8 9800 98 D8 98 3¢ Dg)
-

-e- - - = - - - -

- .-

64GB unified memory
High bandwidth, low latency
912-bit LPDDRS5 interface

Apple-designed custom package

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRID GE

COMP22

200

150

100

Relative performance

50

B sorrware
Apple M1 Max

GPU performance vs. power

70% less power

oo

SR Discrete PC

/ laptop graphics

Integrated PC
/ laptop graphics

10 20 30 40 50 60 70 80 90 100 10 120

Power consumption (watts)

DR JEFF

CSUN . 1. (85 soFTwaRE
s QPU Wars: Ap P le v Nvidia ©ef Drobman
COMP222
‘ Mahaveer Verma, System Design Engineer at NVIDIA (2017-present) ®
Answered August 8, 2017

Because Apple has some of its own algorithms for optimizing graphics output, to run
which they needed to bypass Nvidia drivers and interact directly with the hardware and
thus, were asking for a more direct exposure to Nvidia's hardware (compared to all
other software that runs on top of Nvidia drivers and never bypassing it) which is
against Nvidia's policy to not ‘bend’ its implementation for a customer. I’'m no legal
expert and | have no clue how much of an exposure is generally considered acceptable
by Nvidia, but Apple’s optimization algorithms required a level more than that and so
Nvidia and Apple had to part ways after Maxwell | suppose.

Apple then ‘'moved’ to using AMD.

So, from what I've heard being in the company, it was a conflict of interest. Nothing
else.

CSUN : 8 sorrware
Section

2016-2023
COMP222

GPU Products
AMD

DR JEFF
SOFTWARE

CSUN

°
CALIFORNIA (h INDIE APPDEVELOPER
STATE UNIVERSITY ra I ‘ S © Jeff Drobman
NORTHRIDGE

2016-2023

COMP222

RADEON

GRAPHICS

=210

AN N . VGA section on the motherboard in &7
IBM PS/55

The Radeon HD 7000 series, codenamed
"Southern Islands", is a family of GPUs
developed by AMD, and manufactured on
TSMC's 28 nm process. The primary
competitor of Southern Islands, Nvidia's
GeForce 600 Series, also shipped during Q1

3D rendering is the 3D computer graphics
process of converting 3D models into 2D
images on a computer. 3D renders may
include photorealistic effects or non-

photorealistic styles. 2012, largely due to the immaturity of 1

Tseng Labs ET4000/W32p &l

AMD vs Nvidia

S3 Graphics VIRGE &l

CSUN . B sorrware
hrons GGra o h ics Ca rd S e

2016-2023
COMP222

See gpu vs graphics card

=

XFX - AMD Radeon MSI Geforce GTX MSI NVIDIA Geforce NVIDIA Tesla M10 MSI NVIDIA Geforce MSI Geforce GTX NVIDIA Geforce GT
RX 580 GTS Black 1050 Ti Directx 12 RTX 2060 SUPER Graphic Card - 4 RTX 2060 SUPER 1050 Ti Directx 12 320 1GB DDR3 PCI
Edition 8GB GDDR... GTX 1050 Ti 4GT... VENTUS GP OC... Gpus - 32 GB... VENTUS GP OC... GTX 1050 Ti... Express Pcie...
$189.99 $157.38 $429.99 $2,450.00 $449.99 $239.99 $81.97

Q Best Buy Newegg.com Newegg.com Newegg.com Newegg.com Newegg.com PCLiquidations.com
4.6K+ viewed Free shipping Free shipping Free shipping Free shipping Refurbished

Vs

{VIDIA Geforce GT MSI Geforce GTX MSI Radeon R9 390 MSI Geforce GTX MSI Geforce GTX MSI Geforce GTX MSI Geforce G\
320 1GB DDR3 PCI 1650 GAMING X 4G Directx 12 R9 390 1660 Directx 12 1050 Ti GAMING X 1050 Ti Directx 12 1650 Directx 12
Express Pcie... Graphics Card, PC... GAMING 8G 8GB... GTX 1660 VENTU... 4G Graphics Card... GTX 1050 Ti 4GT... GTX 1650 4GT LP...
$81.97 $256.56 $465.00 $219.95 $169.45 $188.00 $159.99
PCLiguidations.com Newegg.com Newegg.com Newegg.com @ B&H Photo-Vid... Newegg.com Newegg.com

Refurbished Free shipping Yk ok 36 Free shipping 650+ viewed Free shipping 1 0. 8.0. ¢ &

CSUN

9| DR JEFF
SOFTWARE

2016-2023

[] []
INDIEAPPDEVELOPER
e AMD (ATI) & Nvidia Style ™ e
NORTHRIDGE

COMP222

rMemory ™ -
S erg\ebus-Schtrwyrttstelle

> ste DEKher

Motherboard

HyperMemory was a brand for ATl's method
of using the motherboard's main system RAM
as part of or all of the video card's framebuffer
I memory on their line of Radeon video cards
and motherboard chipsets. It relies on new
fast data transfer mechanisms within PCI

Express.
{ AMD External (PCl)

Nvidia
NVIDIA's TurboCache technology is a
method of allowing video cards more available
framebuffer memory by using both onboard
video memory and main system memory.

Main memory is accessed using the high-
bandwidth PCI-Express bus.

AMD Integrated

The AMD Accelerated Processing Unit
(APU), formerly known as Fusion, is the
marketing term for a series of 64-bit
microprocessors from Advanced Micro
Devices (AMD), designed to act as a central
processing unit (CPU) and graphics
processing unit (GPU) on a single die.

DR JEFF

&) soFTwARE
A |\/| D et aies

2016-2023

AAAAAAAAAAAA
STATE UNIVERSITY

COMP222 PRO

CPU

Business Processors

AMD Ryzen™ PRO Processors and Ryzen™ PRO
Processors with Radeon™ Vega Graphics

For power users and mainstream users in the workplace

= From4to 12 cores
= Up to 24 processing threads
= Some models include Radeon™ Vega graphics

AMD Athlon™ PRO Processors with Radeon™ Vega
Graphics

For entry-level users in the workplace

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

AMD 1

AMD

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

AMD Embedded Graphics Processors

GPU

AMDZ
RADEON

T

AMD Welcomes The Next Generation Power-Efficient Embedded GPUs

Products

Ultra-High Performance Embedded
GPUs

These are AMD's highest performing embedded
discrete GPUs. These incredibly powerful processors are
well-suited for high-end casino and arcade gaming
machines, high-end medical imaging devices, and high-
end aerospace applications.

The AMD Embedded Radeon™ E9170 Series

High-Performance Embedded GPUs

These GPUs provide the right balance of performance,
power and price to meet the needs of most customers.
They are well-suited for casino and arcade gaming
machines, medical imaging devices, and digital signage
installations.

Power-Efficient Embedded GPUs

These GPUs provide excellent processing performance
at reduced levels of power consumption, making them
well-suited for mobile signage, retail and kiosks, factory
human-machine interface systems, heads-up aerospace
displays, and thin client computers.

CALIFORNIA AMD‘ l
STATE UNIVERSITY

NORTHRIDGE

2016-2023
COMP222

g Enhanced
Boost Anti-Lag "\ Sync

AMD Radeon™ Boost AMD Radeon™ Anti-Lag AMD Enhanced Sync Technology

Turbocharge your game Delivering even faster click-to-response times Now available for games based on DirectX® 9, 11,

12 and Vulkan® APIs as well as on all GCN-based

GPUs, GCN-based GPU combinations, and/or AMD
S BRI MORE . . Eyefinity Technology display combinations.
Technologies for Gaming

3 E W
’ ‘@i f@i

AMD Virtual Super Resolution AMD TressFX Hair The Vulkan® API

DR JEFF
CSUN 25| soFTwaRE
CALIFORNIA AMDa A M D CéNjé?}PEDrg/gLr%PaE;

STATE UNIVERSITY

2016-2023
OMP222 P Y l
C [m— —— Servers CPU -

64 CORES 48 CORES 32 CORES 24 CORES 16 CORES 12 CORES

8 CORES R H
X86 compatibility
up to up to
threads base boost cache
2P Intel vs 1P EPYC comparison’
Model 2x6262V 1x7702P 8 dies with x86 cores
Cores 48 64
Memaory Capacity 218 418
Max Memory Frequency 2400MHz 3200MHz’
1/0 Lanes 96 PCle® 3.0 128 PCle® 4.0°
TDP 270Watts 200Watts
SPECrate®2017_int_base 242 319
‘Per Socket software’ licensing cost x2 x1
List Price 5800usD 4425usD
Cloud & Virtualization Performance - VMmark® 1.43X
12.88
2 Intel Platinum 8280 9.02
Floating-Point Performance - SPECrate®2017_fp_base’
524
2x Intel Platinum 8280 293
JAVA® Performance - SPECjbb®2015-Multi-JVMmax-jOPS? SO
355121 1/0 die with
2x Intel Platinum 8280 194068

security & communication

Integer Performance - SPECrate®2017_int_base’

2x AMD EPYC™ 7742 682
2x Intel Platinum 8280L 364
HPC Performance - ANSYS Fluent®?
885

2x Intel Platinum 8280

CSUN , 4| soFTware
e AMD GPU’s: Radeon Pro 5 O et Braman

2016-2023
COMP222

Key capabilities and features of AMD Radeon Pro 5000 series GPUs include:

= Exceptional compute performance - Up to 7.6 TFLOPS of single-precision (FP32) floating point performance.

= GDDR6 memory - Up to 16GB of GDDR6 memory with 384 GB/s bandwidth provides ultra-fast transfer speeds to power data-intensive pro
applications.

= AMD RDNA architecture - AMD RDNA architecture was designed from the ground up for superior performance and power efficiency. It is
built on industry-leading 7nm FinFET process technology, providing up to 1.5X higher performance per watt compared to the previous-
generation graphics architecture’.

AMD Radeon™ Pro 5000 series GPUs Compute Units Stream Processors FP32 TFLOPS :nl:lr)r:fry
AMD Radeon™ Pro 5700 XT 40 2560 Upto 7.6 16GB
AMD Radeon™ Pro 5700 36 2304 Up to 6.2 8GB
AMD Radeon™ Pro 5500 XT 24 1536 Up to 5.3 8GB
AMD Radeon™ Pro 5300 20 1280 Upto4.2 4GB

7.6 Tflops

CSUN 89| DR JEFF

&) SOFTWARE
A M D R D N A3 G P U ® Jeff Drobman

C(;(;\u/;rpzzz 11_3_22 2016-2023

https://www.youtube.com/watch?v=hhwd6UgGVk4

Next-Gen
Adaptive SoC

World's most advanced desktop
PC processor for gamers and creators

aMD RYZEN

Launched Sept. 27, 2022

79 DR JEFF
CSUN 22 soFTwaRE
peCaonNIs A |V| D R D N A3 G P U L e
NORTHRID GE 2016—2023
COMP22 11-3-22

https://www.youtube.com/watch?v=hhwd6UgGVk4

WORLD'S FIRST CHIPLET GAMING_GPUJ
.

:

et adadadadadad ol ol sl s T T T T —"
Ll g

j INTERCONNECT BANDWIDTH |
) BPTO 5.3 18/s

DR JEFF

CSUN &5 soFTwaARE
A M D R D N A3 G P U © Jeff Drobman
RIDGE 2016-2023

COMP222 11-3-22

https://www.youtube.com/watch?v=hhwd6UgGVk4

Introducing today

Snm Graphics Compute Die co)
bnm Memory Cache Die o)

AMD{1

RDNA3

World's first chiplet gaming GPU

3 DR JEFF
CSUN &5 soFTwaARE
AMD RDNA3 GPU O eff Brabiman

C(;‘I’\R/ll'Pzzz 11_3_22 2016-2023
https://www.youtube.com/watch?v=hhwd6UgGVk4

{(-24CB OF GDDRE - .

84-BIT MEMORY-BUS

7| DR JEFF
CSUN &%) soFTwARE
AMD RDNA3 GPU ©.ef robmar

CON‘I’\"/i'PZZZ 11_3_22 2016-2023
https://www.youtube.com/watch?v=hhwd6UgGVk4

Bl Higher performance

e through efficient design

Issue Issue

R g::ﬂ.. Dual issue SIMD units

B Flexible FP, Integer, Al operations
S .8 T 0 e
i .

2X instruction issue rate

NS DR JEFF

AMD RDNA3 GPU e

C(;‘I’\R/i 'I;{Izmzbz 1 1_3_22 2016-2023
https://www.youtube.com/watch?v=hhwd6UgGVk4

New Graphics Compute Die

Unified AMD RDNA™ 3 Compute Units
New Display Engine

New Dual Media Engine +54O/O

vs. prior generation

World's most advanced gaming graphics

61 | 5.378/s 24CB

World's Fastest GDORG Transistors

DR JEFF
i SOFTWARE

: AMD RDNA3 GPU i
COMP222 —ﬂ_
https://www.youtube.com/watch?v=hhwd6UgGVk4

CSUN

Decoupled clocks

2 " 3 G H /. shader clock speeda\\ 2 » 5 G H / front-end clock speed

& Al
Up to 25% power savings +15% frequency

Dedicated Al accelerators

2 per CU
New Al instructions
Improved Al throughput

thﬂ up to
A I 2.7X more performance

NS DR JEFF
CSUN 8 soFTware

STATE NIVERSITY A M D Ra d e O n © Jeff Drobman

COMPZZZ 11_3_22 2016-2023
https://www.youtube.com/watch?v=hhwd6UgGVk4

AMD Radeon™

RX'7900 XTX

96 CUs i)BGHz 24 GB\\ \21 AV1 |355w

AMD RDNA™ 3 Game Clock 384-bit CDDkK DisplayPort™ Encode & Decode ' Total Board Power

#95 DR JEFF

CSUN &5 soFTwaRrE

e AMDe AMD Z1 & i robmar
NORTHRIDGE 2016—2023

COMP222

AMD Introduces

Ryzen™ Z1 Series Zen 4 CPU + RDNA 3
Processors, Expanding

the "Zen 4" Lineup into

Handheld Game SANTA CLARA, Calif., April 25, 2023 (GLOBE
Consoles NEWSWIRE) -- Today, (NASDAQ: AMD) introduced

the new Ryzen Z1 Series processors, the ultimate high-

performance processor for handheld PC gaming con-

AMD R Z1 d AMD R Z1 Ext . .
yzen an yeen XTreMt soles!. The Ryzen Z1 Series features two high perfor-

processors bring ultimate portability and

]] mance processors, the Ryzen Z1 and Ryzen Z1 Extreme,
battery life to handheld PC gaming

consoles both offering industry-leading gaming experiences, un-
compromising battery life, and featuring AMD RDNA™ 3
architecture-based graphics. AMD is partnering with Asus
to launch the first Ryzen Z1 Series device with the Asus
ROG Ally, a premium handheld PC console, featuring up to

a Ryzen Z1 Extreme processor.

CSUN : 823 sorrware
Section

2016-2023
COMP222

GPU Products
Intel

DR JEFF

CSUN é;ﬁjsgglwiﬁglz
- New Intel Stvle 1G Interface ™ e

NORTHRIDGE

The position of an integrated GPU in a northbridge/southbridge system layout

(intel)

Front-side

Graphics
card slot
High-speed
graphics bus |
Sl Sl Northbridge
Express) ; M emor
(memory y
controller hub)
Internal
Bus
Southbridge
(/O controller
hub)
IDE
SATA !
3 theynseat ‘ Cables and
Audio Codec mm ports leading
CMOS Memory g off-board
PCl| Slots I/O
LPC
Bus Super |/O
Serial Port
Parallel Port
Flash ROM Flo'fp)z)Dfss
(B1OS) eyMgsge

CSUN 85 sorrware

DIEAPPDEVELOPER
e Chronnis ot e | Xe on |V| aX oesrommoren
NORTHRIDGE 2016—2023
newsroom
COMP222 lntel

What the Intel Xeon Max CPU Delivers: The Xeon Max CPU offers up
to 56 performance cores constructed of four tiles and connected using
Intel's embedded multi-die interconnect bridge (EMIB) technology, in a
350-watt envelope. Xeon Max CPUs contain 64GB of high bandwidth
in-package memory, as well as PCl Express 5.0 and CXL1.1 1/O. Xeon
Max CPUs will provide more than 1GB of high bandwidth memory
(HBM) capacity per core, enough to fit most common HPC

workloads. The Max Series CPU provides up to 4.8x better
performance compared to competition on real-world HPC workloads.’

e AMX extensions boost Al performance and deliver 8x peak
throughput over AVX-512 for INT8 with INT32 accumulation
operations.2

CSUN | M GPU &R sorrware
pralAtiromNIs - t O e
C(;cl,\R/TI;mZD;; ntel newsroom e a X 2016-2023

The Xeon Max CPU is the first and only x86-based processor with high
bandwidth memory, accelerating many HPC workloads without the
need for code changes. The Max Series GPU is Intel’s highest density
processor, packing over 100 billion transistors into a 47-tile package
with up to 128 gigabytes (GB) of high bandwidth memory. The oneAPI
open software ecosystem provides a single programming environment
for both new processors. Intel's 2023 oneAPI and Al tools will deliver
capabilities to enable the Intel Max Series products' advanced features.

CSUN) sgll:TJvI\E/Z;E

NDIEAPPDEVELOPER
e atel Max GPU & e crobrman
NORTHRIDGE 2016-2023
newsroom
comp222 AL

What the Intel Max Series GPU Delivers: Max Series GPUs deliver up
to 128 X'-HPC cores, the new foundational architecture targeted at the
most demanding computing workloads. Additionally, the Max Series
GPU features:

e 408MB of L2 cache —the highest in the industry —and 64MB of L1
cache to increase throughput and performance.
e The only HPC/AI GPU with native ray tracing acceleration,
designed to speed scientific visualization and animation.
e Workload benchmarks:
o Finance: 2.4x performance gain over NVIDIA's A100 on
Riskfuel credit option pricing.
o Physics: 1.5x improvement over A100 for NekRS virtual
reactor simulations.

CSUN | M GPU B soFrware
pralAtiromNIs - t b i
C(;I\R/FI;RIZDZEZ ntel newsroom e a X 2016-2023

Max Series GPUs will be available in several form factors to address
different customer needs:

e Max Series 1100 GPU: A 300-watt double-wide PCle card with 56
X" cores and 48GB of HBM2e memory. Multiple cards can be
connected via Intel Xe Link bridges.

e Max Series 1350 GPU: A 450-watt OAM module with 112 X cores
and 96GB of HBM.

e Max Series 1550 GPU: Intel's maximum performance 600-watt
OAM module with 128 X’ cores and 128GB of HBM.

CSUN B sorrware
e lntel Xeon Max CPU + GPU T i

2016-2023
COMP222 Intel newsroom
In January, we launched our strongest offerings for high performance

computing (HPC) and Al ever with the 4th Gen Intel® Xeon® Scalable
processors, Intel® Xeon® CPU Max Series and Intel® Data Center GPU
Max Series. We also introduced the Intel® Data Center GPU Flex Series
last year — a flagship product for media streaming, cloud gaming and Al
inference — and the Habana® Gaudi®2 deep learning processor for
training.

Co-designed with leading cloud service providers, enterprise and
supercomputing customers, these products showcase key technical
innovations, including the integration of high-bandwidth memory with
x86 CPUs and advanced chiplet architectures. Intel's full data center
and Al hardware portfolio, including our Xeon and Habana products,
have been developed to help our customers solve the world’s most
difficult problems and train the largest Al models.

Accelerated computing and GPUs are among the fastest-growing
segments of the computing market and central to Intel's long-term
success. We are seeing great customer support and we continue to

CSUN B3 soFrware

CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSIT I nte I X P l ' © Jeff Drobman
NORTHRIDGE 2016-2023
COMP222 |nte| newsroom

The Intel Data Center Max Series GPU, code-named Rialto Bridge,

is the successor to the Max Series GPU and is intended to arrive in
2024 with improved performance and a seamless path to upgrade.
Intel is then planning to release the next major architecture innovation
to enable the future of HPC. The company’s upcoming XPU, code-
named Falcon Shores, will combine X" and x86 cores on a single
package. This groundbreaking new architecture will also have the
flexibility to integrate new IPs from Intel and customers, manufactured
using our IDM 2.0 model.

CSUN) sgll:TJvI\E/Z;E

NDIEAPPDEVELOPER
e Chronnis nte | S U p ers oesrommoren
NORTHRIDGE 2016—2023
newsroom
COMP222 ntel

You have probably heard about Argonne National Laboratory, which
will be deploying more than 60,000 Max Series GPUs and 20,000 Max
Series CPUs to power the Aurora supercomputer this year. Aurora is
expected to become the world’s first supercomputer with 2 exaflops of
peak performance. Deployment is going well, with Intel collaborating
closely on testing and development. Argonne expects the system to be
accessible to early researchers by the third quarter of 2023.

Lawrence Livermore National Laboratories (LLNL) and Sandia National
Laboratories are installing thousands of nodes of 4th Gen Intel Xeons
in their CTS-2 systems — the supercomputing workhorse of the
Department of Energy (DOE). LLNL's Intel Xeon-powered predecessor,
JADE, recently contributed to the breakthrough in fusion energy,
helping to design the optimal package for laser induction.

Los Alamos National Laboratory (LANL), another DOE research center,
is installing more than 10,000 Max Series CPUs for its Crossroads
supercomputer, which will power national

security and wildfire research.

CSUN : 8 sorrware
Section

2016-2023
COMP222

GPU Products
Nvidia

CSUN : B sorrware
Parallel Processing & e

2016-2023
COMP222 Wikipedia —

Overview [edit]

IFermi Graphic Processing UnitsI(GPUs) feature 3.0 billion transistors and a schematic is sketched in Fig. 1.

« Streaming Multiprocessor (SM): composed of 32 CUDA cores (see Streaming Multiprocessor and CUDA core
sections).

« GigaThread global scheduler: distributes thread blocks to SM thread schedulers and manages the context switches
between threads during execution (see Warp Scheduling section).

« Host interface: connects the GPU to the CPU via a PCI-Express v2 bus (peak transfer rate of 8GB/s).

« DRAM: supported up to 6GB of GDDR5 DRAM memory thanks to the 64-bit addressing capability (see Memory
Architecture section).

« Clock frequency: 1.5 GHz (not released by NVIDIA, but estimated by Insight 64).

« Peak performance: 1.5 TFlops.

« Global memory clock: 2 GHz.

« DRAM bandwidth: 192GB/s.

CSUN : B8 sorrware
- Parallel Processing: GPU — exison

2016-2023

COMP222

Wikipedia —
Streaming multiprocessor |edit]

Each SM features 32 single-precision CUDA cores, 16 load/store units, four Special Function Units (SFUs), a 64KB block
of high speed on-chip memory (see L1+Shared Memory subsection) and an interface to the L2 cache (see L2 Cache
subsection).

Load/Store Units |[edit)

Allow source and destination addresses to be calculated for 16 threads per clock. Load and store the data from/to cache
or DRAM.

Special Functions Units (SFUS) | edit)

Execute transcendental instructions such as sin, cosine, reciprocal, and square root. Each SFU executes one instruction
per thread, per clock; a warp executes over eight clocks. The SFU pipeline is decoupled from the dispatch unit, allowing
the dispatch unit to issue to other execution units while the SFU is occupied.

CUDA COre | edit)

Integer Arithmetic Logic Unit (ALU): Supports full 32-bit precision for all instructions, consistent with standard
programming language requirements. It is also optimized to efficiently support 64-bit and extended precision operations.

Floating Point Unit (FPU) |edit)

Implements the new IEEE 754-2008 floating-point standard, providing the fused multiply-add (FMA) instruction for both

Fig. 1.
Conve
schedt
execu
cache:

Die sh
inside

single and double precision arithmetic. Up to 16 double precision fused multiply-add operations can be performed per SM, per clock.

DR JEFF

CSIJN SOFTWARE
GPU Performance
COMp222 Wikipedia —

Performance [edit]

The theoretical single-precision processing power of a Fermi GPU in GFLOPS is computed as 2 (operations per FMA instruction per CUDA core per cycle) x
number of CUDA cores x shader clock speed (in GHz). Note that the previous generation Tesla could dual-issue MAD+MUL to CUDA cores and SFUs in parallel,
but Fermi lost this ability as it can only issue 32 instructions per cycle per SM which keeps just its 32 CUDA cores fully utilized.?! Therefore, it is not possible to
leverage the SFUs to reach more than 2 operations per CUDA core per cycle.

The theoretical double-precision processing power of a Fermi GPU is 1/2 of the single precision performance on GF100/110. However, in practice this double-
precision power is only available on professional Quadro and Tesla cards, while consumer GeForce cards are capped to 1/8.°]

CSUN .) sorrwars
. Nvi d 19 G P U e

2016-2023
COMP222 P&H Ch 6 —

An introduction to the NVIDIA GPU architecture

We use NVIDIA systems as our example as they are representative of GPU architectures. Specifically, we follow the terminology of the
CUDA parallel programming language and use the Fermi architecture as the example.

Like vector architectures, GPUs work well only with data-level parallel problems. Both styles have gather-scatter data transfers, and GPU
processors have even more registers than do vector processors. Unlike most vector architectures, GPUs also rely on hardware
multithreading within a single multi-threaded SIMD processor to hide memory latency (see COD Section 6.4 (Hardware multithreading)).

A multithreaded SIMD processor is similar to a Vector Processor, but the former has many parallel functional units instead of just a few that
are deeply pipelined, as does the latter.

As mentioned above, a GPU contains a collection of multithreaded SIMD processors; that is, a GPU is a MIMD composed of multithreaded
SIMD processors. For example, NVIDIA has four implementations of the Fermi architecture at different price points with 7, 11, 14, or 15
multithreaded SIMD processors. To provide transparent scalability across models of GPUs with differing number of multithreaded SIMD
processors, the Thread Block Scheduler hardware assigns blocks of threads to multithreaded SIMD processors. The figure below shows a
simplified block diagram of a multithreaded SIMD processor.

CSUN . g SOFTWARE
. Nvidia Cuda & o

2016-2023
COMP222 Quora

CUDA Core

Dispatch Port
Operand Collector

Result Queue

CSUN - e B soFrware
T Nvidia Cuda O eff Brobmman

comp222 Quora

2016-2023

This chip is roughly what the Ada Lovelace (AD102) RTX 4090 chip will look
like. The full die is 16,384 CUDA cores arranged in 128 SM units. No GPU will
ever be made that uses all 16,384 compute cores. A chip this size is almost
100% guaranteed to have failure points. Nvidia tests every chip and then

CSUN . Bl sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaTE UV R NvVI d re) C u d d ©ef Drobman

comp222 Quora

This chip is roughly what the Ada Lovelace (AD102) RTX 4090 chip will look
like. The full die is 16,384 CUDA cores arranged in 128 SM units. No GPU will

ever be made that uses all 16,384 compute cores. A chip this size is almost
100% guaranteed to have failure points. Nvidia tests every chip and then
isolates dead SM units. They can further test each SM for performance and
then isolate the SM units that do not perform well.

If sixteen dead and underperforming SM units are removed from the chip,
there are still 112 SM units remaining. That is still 14,336 CUDA cores left
active on the chip. This is a reasonable expectation as to the final production
spec of the RTX 4090.

CSUN C . D) sorrware
. Nvi d 19 C U d 3 e

2016-2023
comp222 Quora

Main
Memory

CPU
py
processing
data Copy the result Instruct the processing
Memo
for GP

Execute parallel
in each core

Processing
flow on CUDA

,_ " DR JEFF
CSIIN e g ﬁ SOFTWARE
iHireny Nvi d 1a Cu d 3 o
NORTHRIDGE 2016-2023
comp222 Quora
You write a "kernel” code(and compile for GPU). Send it to GPU. Also send data to

GPU. Then call compiled kernel code on GPU with data attached to it. Then wait
until it completes. After that, you get results from GPU.

Something like this:

cudaMemcpy (gpuData, hostData, n, cudaMemcpyHostToDevice);
kernelIncrement<<<128,128>>>(gpuData);
cudaMemcpy (hostData, gpuData, n, cudaMemcpyDeviceToHost);

1 MY_API void kernelIncrement(int * data)

B {

3 int workItemId = threadIdx.x+blockIdx.x*blockDim. Xx;
4 data[workItemId]++;

5 }

6

7

8

Kernel here is a function that runs on each streaming pipeline of GPU (64-192 of
such pipelines make a SM unit “streaming multiprocessor"”). If its about graphics
acceleration, kernel is called as “shader”. If it is computing it is “__kernel" or
"kernel”. These are just names of functions exposed to developers through APIs like
OpenGL, OpenCL and CUDA. Each so-called “GPGPU pipeline” of GPU runs this
same code.

CSUN C . @A) sorrware
e Nv|d 13 G PU oo

2016-2023
COMP222

@ OpenGenus IQ: Computing Expertise & Legacy — Basic Graphics Processing Unit (GPU).

P

vl

=
1 ® ! .
YD “rj

Vertices Primitives Fragments

Fragments (shaded) Pixels

. DR JEFF
CSUN - B soFrware
CALIFORNIA INDIE APPDEVELOPER
TATE UNIVERSITY © Jeff Drob
Nvidia GPU robman

2016-2023
COMP222

@ OpenGenus IQ: Computing Expertise & Legacy — Basic Graphics Processing Unit (GPU).

Vertex Generation

Vertex Processing

Primitive Generation

Primitive Processing

Fragment Generation

Fragment Processing

NVIDIA GeForce 8800

Pixel Operations

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP222

Nvidia

Type Public
Traded as NASDAQ: NVDA &
NASDAQ-100 component
S&P 100 component
S&P 500 component
ISIN US67066G 1040 #
Industry Semiconductors
Video games
Consumer electronics
Computer hardware
Predecessor 3dfx Interactive #
Founded April 5, 1993; 27 years ago
Founders Jensen Huang

Headquarters Santa Clara, California, U.S.

Nvidia Corporation

NVIDIA

Headquarters at Santa Clara in 2018

Curtis Priem
Chris Malachowsky

Key people

Products

Revenue

Operating
income

Net income
Total assets
Total equity

Number of
employees

Subsidiaries

Website

Jensen Huang (president &
CEO)
Colette M. Kress (CFO)

Graphics processing units
(GPU)

Central processing units (CPU)
Chipsets

Drivers

US$11.716 billion (2018)!"
US$3.804 billion (2018)!"!

US$4.141 billion (2018)!"!

US$13.292 billion (2018)!"!

US$9.342 billion (2018)!"!
13,227 (January 2019)"]

NVIDIA Advanced Rendering
Center, Mellanox Technologies
www.nvidia.com g’
developer.nvidia.com@
www.geforce.comg?

DR JEFF

25 soFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

GPU

Products

YOV Croirmd mre
)GX Qysiems

DRIVE AGX

GeForce RTX 20-Series

NVIDIA Virtual GPU

Jeison

(Quadro

SHIELD TV

» #1 chip company in market cap

(1 A DR JEFF
CSUN . g Q SOFTWARE
INDIE APPDEVELOPER
el Nvidia O et Braman
NORTHRIDGE 2016‘2023

COMP222 GPU

Delaware and based in Santa Clara, California.l?! It designs graphics processing units (GPUs) for the gaming and
professional markets, as well as system on a chip units (SoCs) for the mobile computing and automotive market. Its
primary GPU product line, labeled "GeForce", is in direct competition with Advanced Micro Devices' (AMD) "Radeon"
products. Nvidia expanded its presence in the gaming industry with its handheld Shield Portable, Shield Tablet, and
Shield Android TV.

Since 2014,[¢citation needed] Nyidia has diversified its business focusing on four markets: gaming, professional visualization,
data centers, and auto. Nvidia is also now focused on artificial intelligence.®

In addition to GPU manufacturing, Nvidia provides parallel processing capabilities to researchers and scientists that allow
them to efficiently run high-performance applications. They are deployed in supercomputing sites around the world.[41(5]
More recently, it has moved into the mobile computing market, where it produces Tegra mobile processors for
smartphones and tablets as well as vehicle navigation and entertainment systems.[6I7)€] |n addition to AMD, its
competitors include Intel, Qualcomm, and Arm (e.g., because of Denver, while Nvidia also licenses Arm's designs).

CSUN - B sorrware
Nvidia Products & e

2016-2023
COMP222 GPU

Product families [edit)

Nvidia's family includes primarily graphics, wireless communication, PC processors and automotive hardware/software. Some
families are listed below:

« GeForce, consumer-oriented graphics processing products

« Quadro, computer-aided design and digital content creation workstation graphics processing products

« NVS, multi-display business graphics solution

« Tegra, a system on a chip series for mobile devices

« Tesla, dedicated general purpose GPU for high-end image generation applications in professional and scientific fields

« nForce, a motherboard chipset created by Nvidia for Intel (Celeron, Pentium and Core 2) and AMD (Athlon and Duron)
microprocessors

Nvidia Grid, a set of hardware and services by Nvidia for graphics virtualization

Nvidia Shield, a range of gaming hardware including the Shield Portable, Shield Tablet and, most recently, the Shield Android TV
Nvidia Drive automotive solutions, a range of hardware and software products for assisting car drivers. The Drive PX-seriesis a F
platform aimed at autonomous driving through deep learning,!”% while Driveworks is an operating system for driverless cars.[”"]

CSUN - B8 sorrware
Nvidia Products & e

2016-2023
COMP222 GPU

On May 6, 2016, Nvidia unveiled the first GeForce 10 series GPUs, the GTX 1080 and 1070, based on the company's new Pascal microarchitecture. Nvidia claimed
that both models outperformed its Maxwell-based Titan X model; the models incorporate GDDR5X and GDDR5 memory respectively, and use a 16 nm manufacturing
process. The architecture also supports a new hardware feature known as simultaneous multi-projection (SMP), which is designed to improve the quality of multi-
monitor and virtual reality rendering.[*3II361137] |_aptops that include these GPUs and are sufficiently thin — as of late 2017, under 0.8 inches (20 mm) — have been
designated as meeting Nvidia's "Max-Q" design standard. 3]

Nvidia officially released the NVIDIA TITAN V on December 7, 2017.142143]

Nvidia officially released the Nvidia Quadro GV100 on March 27, 2018.144]

Nvidia officially released RTX 2080GPUs September 27, 2018.

In 2018, Google announced that Nvidia's Tesla P4 graphic cards would be integrated into Google Cloud service's artificial intelligence. 45!

On March 11, 2019, Nvidia announced a deal to buy Mellanox Technologies for $6.9 billion[*6] to substantially expand its footprint in the high-performance computing
market.

In May 2019, Nvidia announced new RTX Studio laptops. The creators say that the new laptop is going to be seven times faster than a top-end MacBook Pro with a
Core i9 and AMD's Radeon Pro Vega 20 graphics in apps like Maya and RedCine-X Pro.[47]

In August 2019, Nvidia announced Minecraft RTX, an official Nvidia-developed patch for the game adding real-time DXR raytracing exclusively to the Windows 10
version of the game. The whole game is, in Nvidia's words, "refit" with path tracing, which dramatically affects the way light, reflections and shadows work inside the
engine.[*€]

In May 2020, Nvidia's top scientists developed an open-source ventilator in order to address the shortage resulting from the global coronavirus pandemic./]

On May 14, 2020, Nvidia officially announced their Ampere GPU microarchitecture and the Nvidia A100 GPU accelerator.[50151]

CSUN

[} []
CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

GAMING

7 KOJMa
- JPRODUCTIONS

= DR JEFF
254 soFTwARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2023

GPU

Embark On Your Journey GeForce Laptops

Buy GeForce RTX™, Get Death Stranding. Thin and powerful GeForce laptops are
designed to level-up gaming performance
and accelerate creativity. Worker by day.
Warrior by night.

Al NEWS

DLSS 2.0

Frames Win Games

Max FPS. Max Quality. Powered by Al. 144+ FPS Gaming.

The Ultimate Quadro Companion NVIDIA Untethers Enterprise AR
. = : it

Access advanced productivity tools and and VR Streaming with CloudXR

take your Quadro® graphics card to the NVIDIA CloudXR" delivers wireless VR and

next level with NVIDIA® Quadro AR streaming of graphics-rich content

Experience”. across 5G and Wi-Fi networks.

NVIDIA Merlin Recommender
Application Framework

NVIDIA makes recommender systems
more accessible to businesses with new

end-to-end pipeline for ingesting, training,

and deploying GPU-accelerated
recommender systems.

GPU-Accelerated Apache Spa

The RAPIDS Accelerator for Apache Sp|
helps data teams increase the
performance of their end-to-end analy
and machine learning pipelines withou
code changes, substantially lowering
infrastructure costs.

CSUN - . &) sorrware
Nvidia Fermi
COMP222 Fermi (microarchitecture) Wikipedia —

From Wikipedia, the free encyclopedia
Fermi is the codename for a graphics processing unit (GPU) microarchitecture developed by Nvidia, first released to

retail in April 2010, as the successor to the Tesla microarchitecture. It was the primary microarchitecture used in the
GeForce 400 series and GeForce 500 series. It was followed by Kepler, and used alongside Kepler in the GeForce
600 series, GeForce 700 series, and GeForce 800 series, in the latter two only in mobile GPUs. In the workstation
market, Fermi found use in the Quadro x000 series, Quadro NVS models, as well as in Nvidia Tesla computing
modules. All desktop Fermi GPUs were manufactured in 40 nm, mobile Fermi GPUs in 40 nm and 28 nm. Fermi is
the oldest microarchitecture from NVIDIA that received support for the Microsoft's rendering API Direct3D 12
feature_level 11.

The architecture is named after Enrico Fermi, an Italian physicist.

Nvidia Fermi

Release date April 2010

Fabrication process 40 nm and 28 nm
History

Predecessor Tesla 2.0

Successor Kepler

DR JEFF

Nvidia New Chips e

COMPZ April 2022 —
NVIDIA INVESTOR DAY
NEW PRODUCTS ANNOUNCED:
- Hopper: silicon architecture

- H100: first datacenter built with
Hopper
» Grace: CPU superchip

i

EYE FOR AN EaLia | CURVE YOURISESMARKET]
Al BUYBACK ENTHUSIASM | INTERNALS |

o NVIDlA REVEALS NEW PRODUCTS AT INVESTOR DAY
NVIDIA TEASES "FASTEST Al SUPERCOMPUTER"

CSUN C . . &R sorrware
mCuroNs Nvi d 1a New C h | p S E o firid

2016-2023
comp222 Quora March 2022

e Brett Bergan - Follow

Building PC's for 25 years - Updated Mar 29

Why is it predicted that Moore's law will/is no longer be accurate?
Can't we just make bigger processors?

Nvidia just announced it new whopper of a GPU with 80 billion transistors
fabbed at 4nm. This up from 54 billion transistors on the Ampere A100.

One square inch is 645mm?

This new (Grace) Hopper GPU will be a massive 900mm? and potentially use
600W but capable of a staggering 48 FP32 TFLOPS. Just to be clear that is
about three RTX 2080 Ti's.

Performance per watt will be about double that of a RTX 2080 Ti.

CSUN : 8 sorrware
Section

2016-2023
COMP222

GPU Products
ARM

@ DR JEFF
CSUN . 23 soFTwARE
pCAonNI A R |V| |V| 3 | | G P U oesrommoren
NORTHRIDGE 2016—2023

COMP222 —
Mali (GPU)

From Wikipedia, the free encyclopedia

The Mali series of graphics processing units (GPUs) and multimedia processors are semiconductor intellectual property cores produced by ARM Holdings for licensing
in various ASIC designs by ARM partners.

Mali GPUs were developed by Falanx Microsystems A/S, which was a spin-off of a research project from the Norwegian University of Science and Technology.['] Arm
Holdings acquired Falanx Microsystems A/S on June 23, 2006 and renamed the company to Arm Norway.?)

Technical details |edit)

Like other embedded IP cores for 3D rendering acceleration, the Mali GPU does not include display controllers driving monitors, in contrast to common desktop video
cards. Instead, the Mali ARM core is a pure 3D engine that renders graphics into memory and passes the rendered image over to another core to handle display.

ARM does, however, license display controller SIP cores independently of the Mali 3D accelerator SIP block, e.g. Mali DP500, DP550 and DP650.[3!
ARM also supplies tools to help in authoring OpenGL ES shaders named Mali GPU Shader Development Studio and Mali GPU User Interface Engine.

Display controllers such as the ARM HDLCD display controller are available separately.*]

CSUN

DR JEFF

. . . SOFTWARE
CALIFORNIA C@INféEAPEL;!g/[E;%P;;
s o Mali GPU Timeline Jeff Drobm
COMP222
GPU
Variants | edit)
The Mali core grew out of the cores previously produced by Falanx and currently constitute:
Core
Micro- Shader Die
Fab clock
Model # archi- Type s Launch date core (n size rate ¢ cache %
tecture count (mm?)

(MHz)
Malr p | Fxedfunclion | ;05 gipermanent deagink | 4 ? ? N/A
55/110 & pipeline!®]
Mal 20071%! 1 ? 2 N/A
200 & ' '
Mal 1 40 2 500 8 KiB
300 28 '
Mall-400 P ble | 2008 1-4 40 ? 200-600 i
MP & Utgard!®! .rogram7m avie 28 ‘ KiB

pipelinel”]
Mali-450 2012 -8 40) 300750 8-512
MP & 28 ' KiB
Mali-470 2015 1-4 40) 250650 8-256
MP & 28 ‘ KiB
Mali- 32
. 1-4 ? |533

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Mali GPU Timeline

Mali-
G71&

Mali-
G52

Mali-
G72&%

Mali-
G76

Mali-
G57&

Mali-
G77&

Model

Bifrost 2@
gen

Bifrost 3™
gen

Valhall 15t
gen

Micro-
archi-
tecture

Unified shader
model +
Unified
memory +

scalar, clause-
based ISA

Superscalar
engine +
Unified
memory +
simplified
scalar ISA

Type

Q2 2016

Q12018

Q2 2017

Q2 2018

Q2 2019

Q2 2019

Launch date

1-4(20r3
EU per
core)

4-20

7-16

Shader
core
count

16
14
10

16
12
10

12

Fab

(nm)

1.36 mm
2 per
shader
core at
10 nm(#®!

Die size
(mm?)

GPU

546-
1037

850

572-800

600-800

850

Core
clock
rate
(MHz)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2023

128—-
2048 KiB

128—-
2048 KiB

512-
4096 KiB

64-512
KiB

512—-
4096 KiB

Max L2
cache
size

