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**|C & Microprocessor History = slide 3
**RISC vs CISC = slide 28

«*Moore’s Law =2 slide 33

s*Multi-Core = slide 55

s*Cache =2 slide 63

**Interrupts = slide 72
 Lab 4 Interrupt model = slide 78

s Exceptions -2 slide 91
*¢*Clocks & Cycles - slide 102
**PSW (state) = slide 131
s*Power - slide 138
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https://computerhistory.org/blog/beckman-shockley-
and-the-60th-anniversary-of-the-birth-of-silicon-valley

CHM BLOG CURATORIAL INSIGHTS ,
REMARKABLE PEOPLE

BECKMAN,
SHOCKLEY AND THE
60TH ANNIVERSARY
OF THE BIRTH OF
SILICON VALLEY

By David Laws | February 10, 2016
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“ CHM on Shockley

None would have the same lasting impact on the
fortunes of the future Silicon Valley and beyond as Dr.
Arnold Beckman’s disclosure of an agreement signed
the previous day for “the establishment in the
Stanford community of the Shockley Semiconductor
Laboratory to develop and produce transistors and
other semiconductor devices.”

ABOUT THE AUTHOR

David A. Laws [AMD 1975-1986, V.P. Business Development]
Is @ high-technology business consultant with a focus on

marketing and strategic planning. He earned a B.Sc. «
(Physics) in the UK and after moving to Californiain 1968 “
worked for Silicon Valley companies, including Fairchild

Semiconductor, Advanced Micro Devices (AMD), and Altera Corporation, in roles
from product marketing engineer to CEO.



. ] ) soFrware
CSUN =)
My Genesis Article o

2020-23
COMP222

Genesis: A Silicon Valley Tale —_faIRcHILD

SEMICONDUCTOR C ORPORATION
’

TECH HISTORY ARTICLE BY DR JEFF DROBMAN

y [
3 o FAIRCHILD

Highlights
+ Fairchild founding
¢ Intel founding
¢ AMD history
+* AMD - Intel rivalry

Opérations™ 7 Sales and Adminstration

Why jOn't web ge_t tOSeSher g
% Search for CMOS ) R start a business? ‘1

% RISC CPU Architecture

% Legendary Parties & Conferences
% Anecdotes

s Valley Significant Others

% Genesis org-chart

s Process Technology Evolution

% Anniversaries of Technologies
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The Legend

It has long been legendary that companies in Silicon
Valley got started in garages and beach houses,
and | am setting the record straight: /t is true. Apple
was started in Steve Wozniak's garage, when friend
Steve Jobs came by and saw his hobby computer.
Advanced Micro Devices (AMD) got its start in
founding president Jerry Sanders' rented Malibu
beach house, on a chilly December evening in 1968
— though the house was heated considerably by
those entrepreneurial fires. AMD was incorporated 5
months later (May 1969).
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https://www.eetimes.com/the-new-silicon-frontier-chapter-4-startup-

fever-and-venture-capital/
DESIGNLINES | EE LIFE

The New Silicon Frontier Chapter 4
Startup Fever and Venture Capital

MELTING POT FOR THE FAIRCHILDREN

Sheldon Roberts, Eugene Kleiner, and Jean Hoerni’s collective decision to leave and compete against
Fairchild, just over three years after the company was founded, was the first of what would be many
subsequent defections and spinouts, eventually known as “Fairchildren,” directly or indirectly creating
dozens of corporations, including Intel and AMD. In doing so, Fairchild sowed the seeds of innovation
across multiple companies in the region that would eventually become known as Silicon Valley.

While it is unclear who came up with the moniker, “Silicon Valley,” Don Hoefler, a technology reporter for
the industry publication Electronic News, is often credited with popularizing the name in a 1971 column
about the region’s chip industry. Hoefler also promoted the area’s innovative qualities, and was one of
the first writers to chronicle the Northern Californian technology industry as a community.

Don Hoefler


https://www.eetimes.com/the-new-silicon-frontier-chapter-4-startup-fever-and-venture-capital/
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EETimes D0

? / )
Vi

tal watering holes, restaurants and other hot
spots provided venues for Silicon Valley's "work

i d, play hard" ethos, where industry folk
ﬁ& hered after work to drink, gossip, brag, trade

r stories, talk shop, exchange ideas, change

J0bs and develop new contacts. Key venues
included the Wagon Wheel, Lion & Compass,
and Ricky's, along with'the Peppermill and the
Sunnyvale Hilton.
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THE FAIRCHILD LEGACY

Throughout the first half of the 1960s, Fairchild was the undisputed semiconductor leader, forging ahead
across all industry segments, be it design, technology, production or sales. Early sales and marketing
efforts were modest and military-oriented; that changed in 1961 when Robert Noyce and Tom Bay
recruited a group of aggressive salesmen and marketing specialists, including Jerry Sanders III and Floyd
Kvamme. The newcomers transformed Fairchild’s sales and marketing departments into one of the
industry’s legends.

Among the pivotal moments was Fairchild’s entry into the consumer TV market. Attracted by potential
high volumes, Sanders wanted to replace the tube (valve) CRT driver with a transistor, but the target
price was U.S. $1.50. Transistors at that time were selling to the military for $150.00. In what can only be
regarded as a massive leap of faith, Noyce’s instructions to Sanders were, “Go take the order, Jerry. We’ll
figure out how to do it later. Maybe we’ll have to build it in Hong Kong and put it in plastic, but right now
let’s just do it.”
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By always ensuring any bill of materials
included at least one TTL part that

was only available from it, Texas Instruments
was able to stay one step

ahead of the competition and own the T'TL
market for the best part of 30

years, until standard logic eventually fell
victim to the 1980s application-

specific IC revolution.

The TTL Data Book for
Design Engineers.
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Charles Sporck, Noyce’s operations manager often credited with running the industry’s tightest ship, left
in early 1968 along with Pierre Lamond to join Widlar and Talbert at National Semiconductor. That
triggered Noyce and Moore’s departure from the firm later that same year—a pivotal moment in the
eventual demise of the firm. The collective exodus of Sporck, Noyce, and Moore, along with so many other
executives, signaled the end of an era, prompting Sherman Fairchild to bring in a new management team,
led by C. Lester Hogan, then vice president of Motorola Semiconductor.

Sporck = National
HOGAN’S HEROES

Hogan’s arrival, and the subsequent displacement of Fairchild managers, demoralized the firm even
further, prompting a further exodus of employees who would launch a host of new companies. Leading a
group dubbed “Hogan’s Heroes,” the ultra-conservative Motorola executives immediately clashed with

Sanders, Fairchild’s flamboyant sales chief.

Hogan/Wilf/Sanders
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While initially slow to respond to the changing market under Sander’s direction, Fairchild embarked on a
strategy of leapfrogging Texas Instruments by focusing on more complex large scale, 30-plus gate parts,
instead of simpler small and medium scale devices under 30 gates — a strategy that was proving popular
and successful with engineers. The move forced Texas Instruments to recognize the threat and copy all of
Fairchild’s 9300 series parts under 74 series numbers (for example the 9300 became the 74195 and the
9341 the 74181.)

Sander’s entire strategy collapsed, however, when Hogan capitulated to Ken Olsen, founder and CEO of
Digital Equipment Corporation and a key Fairchild customer. Olsen wanted Fairchild to give up on its
proprietary TTL technology and instead second-source Texas Instruments’ 74 Series TTL. Against
Sanders’ wishes, Hogan agreed, signing the death warrant for Fairchild’s TTL strategy. Sanders was,
understandably livid. “You’ve just killed the company, Ken,” Sander’s fumed.

Hogan’s betrayal was the last straw for Sanders. He, together with a group of Fairchild engineers, quit to
start Advanced Micro Devices. With Sanders installed as president, one of his first moves was to establish

the mantra: “People first, revenues and profits will follow.” Sanders also gave every employee stock
options in the new company, an innovation at the time.
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Fairchild
Chairman/CEO,
LSI Logic
founder

Wm Shockley

Wilf Corrigan
AR R
L9

e
yl

Fairchild founders (8)

, In 1983, Gifford co-
Jerry Sand |
erry Sanders founded Maxim Integrated
CEO, AMD  products

1969-2002

From left: W. Jerry Sandars lil, Prasident aa¢ Chzaman of the Bowd. D, Jeka Carey, Mani
Oigital Oparations. Sven e
Dovalopmaes neleg earing
of Swies and Administration. Jock F. Gifford, Crector of Marketing and Business Davelopmunt,
Masaging Director, Analop Operations.

-]
2% 0

Gordon Moore

Cypress Semi founder



https://en.wikipedia.org/wiki/Maxim_Integrated_Products

CSUN : B soFrware
MPU/MCU Generations i

2020-23

COMP222
Microprocessors L2z Microcontrollers
For i8008, 6800 For
COMPUTING CONTROL

Bit-slice Am2

MPU i M
18085, 280, 6502 18048, i8051, PIC
1975 8-bit MCU

CISC

i80n86, 68000, zsooo 1978 16-bit MCU 28 PIC

N S

, RISC /L
Pentiums, MIPS i MCU 29K, 1960, ARM, PIC
PowerPC, SPARC 1985 32/64-bit , 1960, ARM,

N S
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Courtesy of Domakl F, Hasmon, Depl, of Ekec. Engr., Univ, of Missisippi, University, M§ 38677
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6502 in 1974

e Yowan Rajcoomar - Follow
7 IT Engineer (2018-present) - 1y
Related How were microprocessors designed before Verilog and VHDL?

The earliest designs were hand drawn.

Example: Sheet representing the logic and buses of a 6502 from 1974:

T .

y -
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0 Mick Stute - Follow
Started with hacking the C64 -

@MC6809P

cesP
QLLH9210

The 6809 was the first microprocessor that a programmer could write completely position
independent fully reentrent code without using coding tricks — in other words, the chip
fully supported it making designing and writing such a program “easy"”. This is because the
stack registers had some advanced addressing modes and and the addition of the user
stack pointer "U" and it provided addressing relative to the PC.

The other great feature was the two 8-bit accumulators could be viewed as a single 16-bit
register (labeled “D") (first time in the 6800 family).

ﬁﬁ
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? CISC W UMESINE Multi-core =
Gen1: 8-bit | Gen2: 16-bit NCeNSIS 20 T _ Gen 5: GPU

Athlon

780 78000 | zs80000 Apple Ath'O“ 64/x2 64-b ARMVS
% ARM 29K ARMS6

8080 8085 _— w
|386 |960 Pentium P-4

8008 | 8036 1286 M issc | isse P-l k- P-M 9C D°
MHz 0.5 )0 23 ) P — .

o
/' 5.3 LY 16 ) 25 T 100 400 1G 2G | 3G

Google TPU

AMD ;
idi Nvidia Adreno
- . Qualcomm
Sig2650 _
ATI (AMD)
RCA1802
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Intel CPU Trends
(sources: Intel, Wikipedia, K. Ogukotun)
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48 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp
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image: CPU Architecture War : Clock Speed v.s. Instruction-Level Parallelism [
https://www.linkedin.com/pulse/cpu-architecture-war-clock-speed-vs-instruction-level-
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What determines processing speed on CPUs?

@ Jeff Drobman
Y Lecturer at California State University, Northridge (2016—-present) - (® Just now -

“speed”? raw clock speed is limited by longest unclocked data or signal path, and
further limited by thermal issues of power density, and secondarily by RC time
constants of the vast interconnect layers (and finely by the speed of electric waves in a
thin conductor).

“throughput” is a product of ILP (Instruction Level Parallelism) as measured by IPC
(Instructions per Clock) x clock frequency = instructions per second (MIPS or FLOPS).

MIPS = IPC* x F

*Total IPC = IPC per core x N (cores)
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CPU ISA’s

**x86
1 i8088

L Pentium
= |ntel P, M
= AMD K5-8

< MIPS
1 R3000/4000
J MIPS32/64
«*ARM
 Cortex (A, M)
Jd ARMvV7/8

“*RISC-V

Z8000 vs. M6800 16-bit MPU’s .

The AmZ8000
Family

AmZ8000 VS 68000
REGISTER ARCHITECTURE

MAY 1981

The AmZ8000 and the 68000 take quite different approaches to
register architecture. The principal points of difference are:

® General purpose vs. special purpose registers
@ Pairing vs. telescoping of subregisters
@ Extensibility of the registers sets
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AmZ8000 MC68000
16 General Purpose Registers can be used as 8 Data Registers can be used as
8 byte plus 8 word registers
or 16 word registers
or 8 long word registers
or 4 64-bit registers

Advanced Micro Devices 21

8 byte registers
or 8 word registers
or 8 long word registers
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¢ Microprocessor History

» 1971-85: CISC (8/16-bit)
< Intel 14004 (4-bit)
< Intel i8008 (8-bit) = i8080 - i8085, Z80 = i8086 (16-bit) > “x86”
<> Motorola 6800 (8-bit) 2 6502 = 68000 (16-bit)

<> IBM PC used i8088 (8/16-bit) in 1981 = i80n86 (“x86”) = Pentiums
(now RISC)

» 1985-2000: RISC — (32/64-bit)
<> SPARC* (UC Berkeley—> Sun/Oracle)
<> MIPS* (Stanford)
<> PowerPC (Motorola/IBM)
<> AMD 29K
<> Intel 1960
< ARM*

*still exist
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@ Jeff Drobman - Just now
sure, there have been many CPU architecture improvements the past 30
years, from superscalar to multi-threading (instruction parallelism) then
SIMD for vectors (data parallelism). all that is the same for CISC as RISC.
but the basic architecture difference still remains: RISC has NO memory
addressing instructions other than Load and Store, and so does achieve
single-cycle execution (except Load, Branch). It is the ISA which
distinguishes RISC vs CISC.
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Jeff Drobman - Just now

‘ good description of x86 architecture, but | disagree with you on RISC.
RISC was invented by Profs. Patterson at UCB and Hennessy and his
pals at Stanford, based on a single goal: achieve single-cycle execution
for nearly all instructions. that meant getting rid of operands in memory
and using a large set of general registers with Load/Store. MIPS and
ARM were the forerunners of RISC, and still are RISC. x86 going to
uOps is merely a reversion to microprogramming, which RISC
eliminated!
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Compare to MIPS “13”
» MOV vs LEA vs Load/Store

MOV AX,addr <> LEA AX,[addr]

Load AX

MOV CX,BX <> LEA CX,[BX+10]
ADD CX,10 *Flags unchanged

Compact Add 10

LEA EAX,[EAX+4*EAX] < MULT EAX,5

Multiply by 5
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Moore’s Law

More Moore’s Law in separate set: Chips & Fabs
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Looking Back

R O\rgigi'hal in 1965: # Transistors will double every year (12 months)

** Moore revised his prediction in 1975: double every 2 years (24 months)

—> THIS IS MOORE’S LAW

¢ Intel’s exec David House added CPU complexity would double every 18 months
¢ History shows # Transistors has doubled every —

O 2 years in logic

. 10,000,000,000
d 18 months in DRAM/SRAM
1,000,000,000
100,000,000
- © BIPOLAR LOGIC
- A BIPOLAR ARRAYS 10,000,000
- @MOS LOGIC @
- ®MOS ARRAYS S
2 1,000,000 -
&
'2. 100,000
2
E
2 10,000

1,000

The number of transistors

3 / on the largest
°® microprocessors has doubled
/ about every two years _—

/ from 1971 to 2010.
o

e | l I | I |

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
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Figure 3. Gordon Moore notes on IC device types. Collection of the Computer History Museum, 102783359.

Year Device Function Transistors | Resistors | Components LOG,
1955 2N697 Transistor 1 0 1 0
1962 Type G RTL 3 - I/P gate 3 4 7 2.8
1963 (late 62) | TypeR RTL D Flip Flop 15 18 33 5.0
1564 945 DTL R-S Flip Flop 13 21 34 5.1
1965 (late 64) 958 RTL Counter 33 25 58 5.9
1566 S300 TTL Shift Register 85 40 125 7.0
1967 4500 DTL 32- Gate Array 200 64 264* 8.0

Figure 4. Table of component count for devices in photograph.
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Future of Moore’s Law

¢ Chip design
O Transistors

= SiGe
=  FinFET
= UNT

O Chip stacks (3D hybrid)

= Intel/Micron 3D Xpoint
O 3D

= NAND Flash (EEPROM)

¢ Architecture

O Specialized hardware (GPU, APU, etz

1 Reconfigurable hardware (FPGA)
¢ Thermal/Cooling
O Microfluidics (liquid cooling)
** Something completely diffferent
1 Molecular computing
O Quantum computing

I Better by design

Standard transistor

Source

Silicon
block

A transistor is a switch. Ordinarily, current cannot
flow. When a voltage is applied to the gate, the
channel becomes conductive, current flows from the
source to the drain, and the transistor switches on.
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Looking Forward

finFET transistor

Source

A finFET transistor raises the channel above the
block of silicon upon which the device sits. That
allows the gate to wrap around three sides of the
channel, improving its electrical properties.

Source: The Economist

New sorts of transistors can eke out a few more iterations of Moore’s

law, but they will get increasingly expensive

“As Moore’s Law slows, we are being forced
to make tough choices between Power,
Performance and Cost.” (ARM)

Faith no Moore
Selected predictions for the end of Moore's law

1995 2000 2005 2010 2015 2020 2025 2030

G. Moore, Intel

D. Hutcheson, o ______. :

VLSI Research

I. Chuang, IBM Research @========r e e ——— e e e e -

P. Gargani, Intel @===~==mcccccccccccc e e ccc—a e -0
L. Krauss, Case Western, .________________________________________g;_);_)rox. 2600
& G. Starkman, CERN
G. Moore, Intel @=====mmmccccnnn=- P—— 2015-25
Cited reason: M. Kaku, City College of NY @======dmmmemeuex -, 2021-22
Economic limits R. Colwell, DARPA; (formerly Intel) @=====m=m=m==m= — 2020-22

M Technical limits
G. Moore, Intel @======-mmcmmmmeee =
Sources: Intel; press reports; The Economist
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Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.
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Year of introduction

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.
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Density Memory and Storage
bits per square inch Ever more dense
100 bdlion |
IBM 75GXP
77 billion bytes
10 billion ~
¥ blikon Tntegral 5170A S
170 mlltion bytes million bytes
HDD Storage
100 million 16 Mbit DRAM
DEC RAS1 2.1 million bytes
456 million byes
10 million 18BM 3350
318 million bytes
256 Kb DRAM
33 thousand bytes
1 million bt \ — . LA s S B :
1955 1960 1965 1970 1985 1990 1995 2000
BM2314
29 million bytes
100 thousand / Intel 11103
.
1.0 Kbt ORAM Semiconductor Memory
128 bytes
Fairchild 4100
10 thousand 255 Bt SHAM
1BM 350 (RAMAC)
1 thousand | 3.8 million bytes
HDD density calculated as tracks per inch times peak bits per Inch
Semiconductor density calculated as bits per chip divided by chip area
Only a few of hundreds of data points are shown

Hard disk storage has become denser at an exponential rate over the last 50 years, just like main
memory. The dramatic increase in capacity and speed of both has fueled the increasing power of

computers.
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Hardware Systems Engineer

10000 —4® 10000 nm 10 microns
] Technology nodes
] nm in semiconductor
aet ‘ s00nm Manufacturing processes
& 1000 § 1000 nm @800 nm
& ] 1 micron '600 nm
L ! @350 nm Moore’s Law
o -
&
>, 100 -
o 3
o :
o ]
%% |
@ 10 = 10 nm
- 1
1 (pg,
: k. N % ¥ L

1970 1980 1990 2000 2010 2020
Year
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Process Comparison

Drazen Zoric - Follow

&

IRDS roadmap
2017
Proce
il 7 nm 5 nm
name
Transistor
density Unknown | Unimown
(MTrimm?)
SRAM bit-
cell size 0.0271971 | p,0201%7
(um?)
Transistor
gate pitch 48 42
(nm)
interconnect ”
pitch (nm)

SVE Team Lead Validation ¢

Samsung!?IEZE34)

SLPE 4LPE
133.56-1349 137-145.7
0.026 0.026
57 &7
36 32

TSMcl?
NS NSP N4 MNaP
185.46 106619155
0.021 Linknown Unknown
48 nkrcown Unknoawn
28! Unknown Unkncwn

N-ﬂxi‘”":*"'l TE8)

Unknown

Unknown

Linknown

Unknown
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Intel =129

160

30

Notice how TSMC 5nm has almost 40% higher transistor density than Samsung 5nm. Even
Intel ex 7nm has 20% higher density.
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Characteristic 1992 1995 1998 2001 2004 2007
Feature size (microns) 0.50 0.35 0.25 0,18 0,12 0.10
Gates per chip (millions) 03 0.8 2.0 5.0 10.0 20.0
Bits per chip

DRAM 16M 64M 256M 1G 4G 16G

SRAM AM 16M 64M 256M 1G 4G
Wafer processing cost ($/cm’) $4 00 3.90 3.80 3.70 3.60 3.50
Chip size (mm’)

logic 250 400 600 800 1,000 1,250

memory 132 200 320 500 700 1.000
Wafer diameter (mm) 290 200 200-.400 200-400 200-400 200-400
Defect density (defects/cm’) 0.10 0.05 0.03 0.01 0.004 0.002
Levels of interconnect (for logic) 3 4-5 5 5-6 6 6-7
Maximum power (watts/die)

high performance 10 15 30 40 40-120  40-200

portable 3 4 4 4 4 4
Power supply voltage

desktop 5 3 2.2 2.2 i 13

portable 33 2.2 A 15 1.5 1.5

Moore's Law- IC process parameters, die sizes and cost



Moore's Law
is alive and well
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Transistors Per Device

----- 2X every 2 years ® Intel and non-Intel CPU
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Moore's Law vs actual transistor count

Prediction of Moore's Law
Graphcore GC2 IPU (CPU) ~ 23,600,000,000
Nvidia GV100 Volta (GPU) 21,100,000,000

AMD 32-core Epyc (CPU) 19,200,000,000

Nvidia TU102 Turing (GPU) 8,600,000,000 Most sewicondunetor
Qualcomm Centriq 2400 (CPU) @® 15,000,000,000 industry forecosters,

58,315,338,239

Nvidia GP100 Pascal (GPU) 15,300,000,000 uncduding Gordon
AMD Vega 20 (GPU) ) 13,2&1,000,000 Movove, expect
AMD Vega 10 (GPU) €28 12,500,000,000 Moore's law will end
Nvidia GP102 Pascal (GPU) 11,800}000,000 by around 2025.
Apple A12X Bionic (CPU) 10,000,000,000

Oracle 32-core SPARC M7 (CPU) 10,000,000,000
IBM z14 Storage Controller (CPU) - 9,700,000,000
Nvidia Tegra Xavier SoC (CPU) 9,000,000,000
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ON THE EARNINGS CALL
PAT GELSINGER, INTEL CEO

— "The unprecedented demand for
semiconductors has stressed
supply chains across the industry.
We've doubled our internal wafer
capacity in the last few years, but
the industry is now challenged by
a shortage of foundry capacity,
substrates, and components...”

Intel building 2 new fabs in AZ $20B

“..We expect it will take a couple * Intel, Micron only remaining US fabs

of years for the ecosystem to make * Intel produces 17% of world supply
¢ US produced 37% 20 yrs ago

«» AMD divested its 25 fabs in 2006

the significant investments to
address these shortages.”
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Intel New Fabs in Phoenix
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Intel, MediaTek Enter Into Chip-Manufacturing
Agreement

5:50 AM ET, 07/25/2022 - MT Newswires05:50 AM EDT,
07/25/2022 (MT Newswires) -- Intel (INTC) said Monday it
entered into an agreement with MediaTek to manufacture
chips using Intel Foundry Services.

The chipmaker said MediaTek aims to use Intel's process
technologies to produce multiple chips for smart edge
devices.

Financial details of the agreement were not disclosed.

© 2022 Dr Jeff Drobman — drjeff@drjeffsoftware.com
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Intel’s Newest Fabs

S20B in Ohio Online end of 2025

SATURDAY, JANUARY 22, 2022 AY

Samsung in Texas

Chipmakers are diver-
sifying their manufacturing
sites in response to the
shortages. Samsung said in
November that it planned to
build a SI7-billion factory
outside Austin, Texas.

Micron Technology,
based in Boise, Idaho, said it
would invest $150 billion
globally over the next dec-
ade in developing its line of
memory chips, with a poten-
tial U.S. manufacturing ex-
pansion if tax credits can
help make up for the higher
costs of American manufac-

tring.  Micron globally

Intel to build chip
factories in Ohio

10,000 jobs in Ohio

WAFAANE WMAWAATE ASNWANSATWE Y & 2aFsre e

Two chip factories on the
1,000-acre site in Licking
County, just east of Colum-
bus, are expected to create
3,000 company jobs and
7,000 construction jobs, and
tosupport tens of thousands
of additional jobs for suppli-
ers and partners, the com-

Company will invest
$20 billion as a global
shortage highlights
the risks of reliance on
manufacturers in Asia.

CHIPS for America Act

Lawmakers have been
urging House and Senate
leaders to fully fund a law
meant to address the semi-
conductor shortage. They
want Congress to fully fund
the $52-billion CHIPS for
America Act, allowing for
stateside investment Iin
semiconductorfactories.
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Sept 2022
i

L P - ‘
PRES. BIDEN: THE FUTURE OF THE CHIP R'CK GELSINGER
INDUSTRY WILL BE MADE IN AMERICA |

¥ intel oHIO INVESTMENT

~ S |
A s B —
/gn—r?n-"i"l

§$2OE. s38-68 2B 100%

NEW ALBANY
| 30-YEAR PROPERTY
FEDERAL CHIPS NTIVES,
ais FUNDING STA’ITAE):I\(I:%EDITS TAX ABATEMENT
BIDEN ATTENDS GROUNDBREAKING | FOR BUILDINGS
FOR INTEL CHIP FACTORY IN OHIO
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Chipmaker Micron to
bulld $20 billion N.Y.
factory amid
semiconductor boom

The company eventually could
spend up to $100 billion over 20
years
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BY JEANNE WHALEN
OCTOBER 4 AT 11:16 AM

Tech giant Micron said it will invest

Chipmaker Micron to $20 billion in a new chip factory in

build $20 bil]iO.Il N.Y. Upstate New York, and up to $100
factory amid billion over twenty years if it decides

semiconductor hoom to expand — another sign of a

domestic semiconductor
manufacturing boom.
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Intel video

https://www.youtube.com/watch?v=27M8etXUEUU&t=47s

Gate-All Around (GAA) Ribbon FET: Intel 20A in 2024

Intel
20A

Gate-all-around

RibbonFET

FinFET: 2011

Node name

22nm

FinFET

11 Uers

To further improve the electrostatic gate control over the channel, another major
evolution in the transistor topology is emerging to replace the FInFET. A gate-all-
around configuration involves a vertical stack of electrically isolated silicon
channels. The gate dielectric and gate input utilize an atomic layer deposition (ALD)
Intel amazed the industry with its aggressive adoption of a new transistor topology process flow to surround all channel surfaces in the stack.

at the 22nm process node - the FinFET (also known as the “tri-gate FET").

Intel will be releasing their GAA Ribbon FET 20A process in 1H 2024.

s -l-mﬂ

B BN E B O B
] = g y

Replacement
metal gate
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good: 10 good: 103 good: 620
bad: 18 bad: 33 bad: 38
total: 28 total: 136 total: 658

yield: 35.7 % yield: 75.7 % yield: 94.2 %
die size: 40 mm x 40 mm die size: 20 mm x 20 mm die size: 10 mm x 10 mm

yellow shows bad dice (a function of defect density)
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Lisa Su proudly shows off her 64-core EPYC monster at CES.



CSUN : B3 sorrware
T Multi-Cores + L2 / |3 O eff Brobman

2020-23
COMP222
Intel —

This is a delided Core 2 Quad with the two Core 2 Duo dies.
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Intel —

L1d cache L1d cache
32KB 32KB
L2 cache L2 cache
256KB 256KB
L3 cache
3072KB

This is a late Core 2 Duo (Wolfdale), note how massive the uncore L2 is compared
to the actual CPU cores. (uncore = outside the CPU)
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Intel —

This special ‘glue’ remains in use today in all non-HEDT Intel CPUs.
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AMD - Zen 2

AMD is taking a creative approach with its “7nm” production by keeping tl.c
most problematic part of the CPU at 14nm and putting the scalable “core”
segments on 7nm octa-core “chiplets” that can be used alone or doubled up with
another octa-core chiplet or (shhh...) a Navi GPU.

AMD Kills two birds with one stone thinking outside the box with this creative
Zen 2 layout: silicon yield at 7nm is vastly improved by making smaller chips,
and the final product can be reconfigured to produce either workhorse 16-core
CPU’s or excellent SOC chips with a massive Navi GPU.
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AMD —

GPU

10.7 teraflops of power
56 compute units

HBM2 Memory

CPU

Custom x86 Processor

2.7 GHz

Hyperthreaded
)

Memory
16GB of total RAM

Up to 484GB/s transfer speed

L2+L3 Cache of 9.5MB
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Caches

See slides in 122 Part 1: Memory
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Simulate and illustrate data cache performance
Cache Organization

Placement Policy  Direct Mapping Number of blocks 8
Block Replacemgnt Policy LRU Cache block size (words) 4
Set size (blocks d Cache size (bytes) 128

Cache Performance

[ —
Memory Access Count 510| CacheiBlockTablel
block 0 at to [ —
CachehiitiCotint a6 E [
[ = empty [
Cache Miss Count 14 o it [ —
—
Cache Hit Rate e fiiee—— ] = miss ]

Runtime Log

Enabled
Tool Control

- Disconnect from MIPS | Reset Close
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COMP 122: Computer
P&H Ch 5 Architecture and

One-way set associative Assembly Language

(direct mapped) Spring 2020
Block Tag Data

0 Two-way set associative
1 Block Tag Data Tag Data
2 0
3 1
4 2
5 3
6
! “Ways”

Four-way set associative
Block Tag Data Tag Data Tag Data Tag Data
0

1

Eight way set associative (fully associative)
Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data
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memory hierarchies A53

The Core i7 has additional optimizations that allow them to reduce the miss penalty. The first of these is the return of the
requested word first on a miss. It also continues to execute instructions that access the data cache during a cache miss.
Designers who are attempting to hide the cache miss latency commonly use this technique, called a nonblocking cache,
when building out-of-order processors. They implement two flavors of nonblocking. Hit under miss allows additional cache
hits during a miss, while miss under miss allows multiple outstanding cache misses. The aim of the first of these two is
hiding some miss latency with other work, while the aim of the second is overlapping the latency of two different misses.

Nonblocking cache: A cache that allows the processor to make references to the cache while the cache is handling an earlier miss.

Overlapping a large fraction of miss times for multiple outstanding misses requires a high-bandwidth memory system capable of handling
multiple misses in parallel. In a personal mobile device, the memory may only be able to take limited advantage of this capability, but large
servers and multiprocessors often have memory systems capable of handling more than one outstanding miss in parallel.

The Core i7 has a prefetch mechanism for data accesses. It looks at a pattern of data misses and use this information to try to predict the
next address to start fetching the data before the miss occurs. Such techniques generally work best when accessing arrays in loops. In
most cases, the prefetched line is simply the next block in the cache.

The sophisticated memory hierarchies of these chips and the large fraction of the dies dedicated to caches and TLBs show the significant
design effort expended to try to close the gap between processor cycle times and memory latency.
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Cache Data

5.13 Real stuff: The ARM Cortex-A8 and Intel Core i7—— P&H 5.13 -
Figure 5.13.2: Caches in the ARM (J\Aj.r)ix-ASS and Intel Core i7 6700 (COD

Figu re 5043) The miss penalty on the A53 is 13 clock cycles for the L1 cache and 124 for the L2 cache

L1 cache organization

Split instruction and data caches

Split instruction and data caches

L1 cache size

8-64 KiB each for instructions/data

32 KiB each for instructions/data
per core

L1 cache associativity

2-way (l), 2-way (D) set associative

8-way (1), 8-way (D) set associative

L1 replacement

Random

Approximated LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate(?) Write-back, No-write-allocate
L1 hit time (load-use) | 1 clock cycle 4 clock cycles, pipelined

L2 cache organization | Unified (instruction and data) Unified (instruction and data) per core
L2 cache size 128 KiB to 2 MiB 256 KiB (0.25 MiB)

L2 cache associativity | 8-way set associative 4-way set associative

L2 replacement Approximated LRU Approximated LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate Write-back, Write-allocate

L2 hit time 11 clock cycles 12 clock cycles

L3 cache organization - Unified (instruction and data)
L3 cache size - 2 MiB/core, shared

L3 cache associativity - 16-way set associative

L3 replacement - Approximated LRU

L3 block size - 64 bytes

L3 write policy - Write-back, Write-allocate

L3 hit time - 44 clock cycles
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5.13 Real stuff: The ARM Cortex-A8 and Intel Core i7 P&H 5.13 -
Figure 5.13.3: COD Figure 5.44. A53

The data miss rate for ARM with a 32 KiB L1 and the global data miss rate for a 1 MiB L2 using the SPECInt2006 benchmarks are
significantly affected by the applications. Applications with larger memory footprints tend to have higher miss rates in both L1 and L2.
Note that the L2 rate is the global miss rate that is counting all references, including those that hit in L1. The mcf benchmark is known
as a cache buster.
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5.13 Real stuff: The ARM Cortex-A8 and Intel Core i7 P&H 5.13 -
Figure 5.13.4. COD Figure 5.45. A53

The average memory access penalty per data memory reference coming from L1 and L2 is shown for the AS3 processor when running
SPECInt2006. Although the miss rates for L1 are significantly higher, the L2 miss penalty, which is more than five times higher, means
that the L2 misses can contribute significantly.
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Figure 5.13.£memory hierarchies A53

The L1 data cache miss rate for the SPECint2006 benchmarks is shown in two ways relative to the demand L1 reads for demand
accesses (excluding prefetched). These data, like the rest in this section, were collected by Professor Lu Peng and PhD student Qun Liu,
both of Louisiana State University (see Peng et al.,, 2008)

® L1 miss rate demand reads only Load
o 25%
B
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= 20%
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coherence
Figure 5.10.1: The cache coherence problem for a single memory location (X), read and written by two

processors (A and B) (COD Figure 5.40).

Memory
Time Cache contents for Cache contents contents for
step CPUA forCPUB location X
0

1 CPU A reads X 0 0
2 CPUBreads X 0 0 0
3 CPU A stores 1 into X 1 0 1

Figure 5.10.2: An example of an invalidation protocol working on a snooping bus for a single cache
block (X) with write-back caches (COD Figure 5.41).  Valid bit

Contents of
Contents of Contents of memory
Processor activity Bus activity CPU A’'s cache | CPU B's cache | location X
0

CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPUAwritesaltoX Invalidation for X 1 0
CPU B reads X Cache miss for X 1 s | 1
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Interrupts

(see separate slide set 122 Lecture 2)
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€ INTO (Pin 33) ** GIE (2) — global (2 groups)
D NMI (non'maSkabIE) ‘ INT 1 (Pln 34) ’:, MGS/( INT 0_7
=  Power-ON RV INT 2 (Pin 35)

L INT (maskable) 1
. & INT7
“* VECTORED PRIORITIES

O NVI (non-V)

Q Vi ** HIGH

< LOW

+* PRIORITY (PIC)
 High

O Low (High INTs “preempt” Low) _

¢ INTERNAL

O Hardware events “* PC ARSI 21112
[ T|mers ‘:’ STATUS
= ADC «» CAUSE

= 1/O(S, P)
L Software exceptions
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The Intel 8259 is a Programmable Interrupt Controller (PIC) designed for the Intel 8085 and Intel 8086 microprocessors.
The initial part was 8259, a later A suffix version was upward compatible and usable with the 8086 or 8088 processor. The
8259 combines multiple interrupt input sources into a single interrupt output to the host microprocessor, extending the
interrupt levels available in a system beyond the one or two levels found on the processor chip. The 8259A was the
interrupt controller for the ISA bus in the original IBM PC and IBM PC AT.

The 8259 was introduced as part of Intel's MCS 85 family in 1976. The 8259A was included in the original PC introduced
in 1981 and maintained by the PC/XT when introduced in 1983. A second 8259A was added with the introduction of the
PC/AT. The 8259 has coexisted with the Intel APIC Architecture since its introduction in Symmetric Multi-Processor PCs.
Modern PCs have begun to phase out the 8259A in favor of the Intel APIC Architecture. However, while not anymore a
separate chip, the 8259A interface is still provided by the Platform Controller Hub or Southbridge chipset on modern x86
motherboards.

-cs{% 1~ 28 %vcc
WwRr[]2 271 A0
-RD |3 26 E-INTA % |[RO-7
p7]a 25 [1IR7 o
Deé 5 24 %IR6 ** DO-7
psl |6 23| JIRs RN _
pal |7 sl;gtsesla 22[1IR4 » CASO-3
p3l]s 21[JIr3 % INTReq
D2l ]9 20 ]IRr2
p1l]10 19 []Ir1
pol |11 18| /IR0
CAS OE 12 17 % INT
&l cas1l]13 16| 1-SP/-EN
Closeup of an Intel 8259A IRQ chip N D 15 cas 5

from a PC XT.

Pinout &3
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53

*

IRO-7
DO-7
CASO-3
INTReq

» Trigger: Edge vs. Level
» Priority: Fixed vs. Rotating

K/ K/
000 000

53

*

NEC D8259AC, used on the original 57
IBM PC motherboard.

Functional description [edit)

The main signal pins on an 8259 are as follows: eight interrupt input request lines named IRQO through IRQ7, an interrupt request output line named INTR,
interrupt acknowledgment line named INTA, DO through D7 for communicating the interrupt level or vector offset. Other connections include CASO through CAS2
for cascading between 8259s.

Up to eight slave 8259s may be cascaded to a master 8259 to provide up to 64 IRQs. 8259s are cascaded by connecting the INT line of one slave 8259 to the
IRQ line of one master 8259.

There are three registers, an Interrupt Mask Register (IMR), an Interrupt Request Register (IRR), and an In-Service Register (ISR). The IRR maintains a mask of
the current interrupts that are pending acknowledgement, the ISR maintains a mask of the interrupts that are pending an EOI, and the IMR maintains a mask of
interrupts that should not be sent an acknowledgement.

End Of Interrupt (EOI) operations support specific EOI, non-specific EOI, and auto-EOI. A specific EOI specifies the IRQ level it is acknowledging in the ISR. A
non-specific EOIl resets the IRQ level in the ISR. Auto-EOI resets the IRQ level in the ISR immediately after the interrupt is acknowledged.

Edge and level interrupt trigger modes are supported by the 8259A. Fixed priority and rotating priority modes are supported.

The 8259 may be configured to work with an 8080/8085 or an 8086/8088. On the 8086/8088, the interrupt controller will provide an interrupt number on the data
bus when an interrupt occurs. The interrupt cycle of the 8080/8085 will issue three bytes on the data bus (corresponding to a CALL instruction in the 8080/8085
instruction set).

The 8259A provides additional functionality compared to the 8259 (in particular buffered mode and level-triggered mode) and is upward compatible with it.
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Typically, on systems using the Intel 8259 PIC, 16 IRQs are used. IRQs 0 to 7 are managed by one Intel 8259 PIC, and IRQs 8 to 15 by a second Intel 8259 PIC.
The first PIC, the master, is the only one that directly signals the CPU. The second PIC, the slave, instead signals to the master on its IRQ 2 line, and the master
passes the signal on to the CPU. There are therefore only 15 interrupt request lines available for hardware.

On newer systems using the Intel APIC Architecture, typically there are 24 IRQs available, and the extra 8 IRQs are used to route PCI interrupts, avoiding conflict
between dynamically configured PCI interrupts and statically configured ISA interrupts. On early APIC systems with only 16 IRQs or with only Intel 8259 interrupt
controllers, PCI interrupt lines were routed to the 16 IRQs using a PIR integrated into the southbridge.

The easiest way of viewing this information on Windows is to use Device Manager or System Information (msinfo32.exe). On Linux, IRQ mappings can be viewed
by executing cat /proc/interrupts orusing the procinfo utility.

Master PIC | edit)

« |IRQ 0 - system timer (cannot be changed)

IRQ 1 - keyboard controller (cannot be changed)

IRQ 2 - cascaded signals from IRQs 8-15 (any devices configured to use IRQ 2 will actually be using IRQ 9)

« |IRQ 3 - serial port controller for serial port 2 (shared with serial port 4, if present)

IRQ 4 - serial port controller for serial port 1 (shared with serial port 3, if present)

« |IRQ 5 — parallel port 2 and 3 or sound card

IRQ 6 — floppy disk controller

« IRQ 7 - parallel port 1. It is used for printers or for any parallel port if a printer is not present. It can also be potentially be shared with a secondary sound card
with careful management of the port.

Slave PIC [edit)]

« |IRQ 8 - real-time clock (RTC)

« IRQ 9 - Advanced Configuration and Power Interface (ACPI) system control interrupt on Intel chipsets.[?] Other chipset manufacturers might use another
interrupt for this purpose, or make it available for the use of peripherals (any devices configured to use IRQ 2 will actually be using IRQ 9)

« |RQ 10 - The Interrupt is left open for the use of peripherals (open interrupt/available, SCSI or NIC)

« |IRQ 11 = The Interrupt is left open for the use of peripherals (open interrupt/available, SCSI or NIC)

« IRQ 12 — mouse on PS/2 connector

« |IRQ 13 - CPU co-processor or integrated floating point unit or inter-processor interrupt (use depends on OS)

« |IRQ 14 — primary ATA channel (ATA interface usually serves hard disk drives and CD drives)

« |RQ 15 — secondary ATA channel
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Hierarchy: Priority

**MASKABLE (3)
d 1 NMI (nhon-maskable)

=  Power-ON Reset TI mer

O 2 INT (maskable)

«+VECTORED (2)

M 1 NVI (non)
d1vVi

< TIMER (1)
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»* Decode Pending Interrupts
*»* Allocate memory for Handlers

s* Use Jump Table
 Order by Priority
d Test & Jump
(J Handlers as subroutines: jal = jr Sra
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Lab 4: Memory

FEFFEFFE

7FFFFFFF

80000180

10040000

10010000

00400000

00000000

Display
Stack &
Printer
! Buffer
Handlers
C——
ktext LN
|
Heap
Input
Data Buffer
Text Jalr Br_Table

Typical memory layout for a program with a 32-bit address space.

Br Table:

—

La StO, In_buf
Lw St1, (St0)
Beq St1, “I”, |
Beq St1, “B”, B
Beq St1, “F”, F
Beq St1, “C”, C
Error: ---

Jr Sra
B: -
Jr Sra

List of
Subroutines

DR JEFF
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INDIEAPPDEVELOPER

© Jeff Drobman
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MIPS Memory Config

MIPS Memory Configuration

OxFIffffff
OxFIfFffff

|:> oxffffoo0o

Oxfffeffff

W) 0x90000000

ox8ffffffc
W) 0x30000180
0x80000000

—  0x80000000
ARRRRRR]
ess O | px7fffffff
ess 0 | py7ffffffc
___ | ex7fffeffc
0x10040000

) 0x10040000
) 0x10010000

0x10008000

0x10000000
0x10000000
oxeffffffc
0x00400000

memory map limit address
kernel space high address
MMIO base address

kernel data segment limit address

.kdata base address

kernel text limit address
exception handler address
kernel space base address
.ktext base address

user space high address
data segment limit address
stack base address

stack pointer $sp

stack limit address

heap base address

.data base address

global pointer $gp

data segment base address
.extern base address

text limit address

.text base address

Lab 4 —
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Lab 4 Program Structure

Main

dext

L
e
o
=N
EN

Kernel

Lab 4 —
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Ooo~NOOUHEWNP

## Lab 4

— Interrupts

## by Jeff Drobman
##version: 1.0 >4.14.20
#Interrupt vectors:

# 0-3 active
.data
vector: .ascii "#cev'" #reserve 4 bytes

header: .asciiz '"Lab 4: Interrupts by Jeff D\n"
.align 2

promptl: .asciiz "Enter Int TYPE: @=NMI, 1=NVI, 2=VI, 9=Halt"
.align 2

prompt2: .asciiz "Enter Int Vector (0-15):"
.align 2

MMI_str: .asciiz "NMI interrupt!"

.align 2

NVI_str: .asciiz "NVI interrupt!"

.align 2

VI _str: .asciiz "Vectored interrupt!"

.align 2

Err_msg: .asciiz "Error: illegal Int Type"
.align 2

Halt_msg: .asciiz "Halted! Good-bye"

.align 2

Stop_msg: .asciiz "Stopped out!"

.align 2
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Lab 4 Code Loop

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

loop_main:

subiu $t9,%$t9,1 #decr counter
blez $t9,Stop
la $a0,promptl
Jal GUI_in #get Type in $ad
#Int TYPE Branch table (if-case)
beq $a®,0,NMI
beq $a®,1,NVI
beq $a0,2,VI
beq $a®,9,Halt
b Err #none of above
NMI: _ISR(NMI_str) ”
NVI: _ISR(NVI_str)  —°R  macro
VI: #get vector
la $a@,prompt2
Jal GUI_in #get vector in $ab
_ISR(VI_str)
Halt:subiu $a@,%$a@0,7 #chk for 9
bltz $a@,Err #<9
la $a®,Halt_msg
jal GUI_out
jal printStr
done #kkexit programik
Err: la $a@,Err_msql #default
jal GUI_out

Lab 4 —
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129 .kdata
130 kmsg: .asciiz '"starting Interrupt handler...\n"
131 def_msg: .asciiz "Error: unimplemented vector\n"
132 .align 2 | -
133 end Kdata: .asciiz "ENDkDATA$$$s" |110 #—end subs— |
134 111 #xxstart handler code in kernel segxx
135 .ktext exc_seg 112 .macro push_k
136 #save state 113 move $k0, $v@ #save regs
137 push_k 114 move $k1, $a@
1;8 p;igt§$gc :ng#ﬁggt msg via macro [115 .end macro
139 mfc ' 116 .macro pop_k
140 addi $t0,%$t0, 4 #incr RA in EPC Y
141 mtcd $t0, $14 #EPC+4 (for ERET) 117 move $v0@, $k@ #restore regs
142 #—Branch Table— 118 move $a@, $ki
143 Beq $a0, 0, VO 119 eret
144 Beq $a0, 1, vl 120 .end macro
145 Beq $%$a@, 2, v2
146 Beq $%$a@, 3, v3
izg idgéiult 150 #—Vector Table—

151 v@: #ISR for ve@
149 #end Br table

152 vi:
150 #—Vector Table— 153 v2:
151 v@: #ISR for vo 154 v3:

155 def: #un-impl

156 print_mac def_msg
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. bly L
0x80000180 ol
mov $k1, $at # Save $at register

sw $a0, # Handler is not re-entrant and can't use
sw $al,|savel | # stack to save $a0, $al

# Don't need to save $k0/$kl

mfc@ $kO, $13 # Move Cause into $k©

srl $a0, $ko, 2 # Extract ExcCode field
andi $a@, $a0@, Oxf

bgtz $a0 # Branch if ExcCode is Int (@)

mov $a@, $kO # Move Cause into $a@
mfco $al, $14 # Move EPC into $al

jal |print_excp| # Print exception error message
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mfco
addiu

mtcO

$ko,| $14
$ko,| $ko, 4

mtcO

mfc@
andi
ori

mtco

1w
1w
mov

$k0,| $14

$0, $13
$k0,| $12
$k0, | Oxfffd
$ko, | 0x1
$k0, | $12

$al,] savel

$at, $kil

I.kdatal

save:
savel:

.word 0
.word 0

8\ DR JEFF
| SOFTWARE

INDIE APPDEVELOPER

2020-23

P&H Ch 7 COMP 122: Computer

# % % W

#

Architecture and

Assembly Language
Bump EPC Spring 2020
Do not re-execute
faulting instruction
EPC

Clear Cause register

Fix Status register
Clear EXL bit
Enable interrupts

Restore registers

Return to EPC
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¢ Print your initials
¢ Optional extras

(1 Calculator with
Hex keys

Project

APPLICATION — LCD/LED Modules

send letters/numbers to a 7-segment LCD

Hexadecimal encodings for displaying the digits 0 to F

0

-t

m m Q@ O T » © © N O O S~ O N

O0x3F
0x06
0x5B
Ox4F
0x66
0x6D
0x7D
0x07
Ox7F
Ox6F
0x77
0x7C
0x39
Ox5E
0x79
0x71

Ox7E
0x30
0x6D
0x79
0x33
0x5B
Ox5F
0x70
Ox7F
0x7B
0x77
Ox1F
Ox4E
0x3D
Ox4F
0x47

Digit gfedcba abcdefg a

on
off
on
on
off
on
on
on
on
on
on
off
on
off
on

on

b
on
on
on
on
on
off
off
on
on
on
on
off
off
on
off
off

c
on
on
off
on
on
on
on
on
on
on
on
on
off
on
off
off

d
on
off
on
on
off
on
on
off
on
on
off
on
on
on
on
off

e
on
off
on
off
off
off
on
off
on
off
on
on
on
on
on

on

f
on
off
off
off
on
on
on
off
on
on
on
on
on
off
on

on

g
off

off
on
on
on
on
on
off
on
on
on
on
off
on
on

on
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Simulating the Hexa Keyboard and Seven segment display

This tool is composed of 3 parts : two seven-segment displays, an hexadecimal keyboard and counter
'Seven segment display

Byte value at address OxFFFFO010 : command right seven segment display

Byte value at address OxFFFFO011 : command left seven segment display

Each bit of these two bytes are connected to segments (bit O for a segment, 1 for b segment and 7 for point

'Hexadecimal keyboard

Byte value at address OxFFFF0012 : command row number of hexadecimal keyboard (bit O to 3) and enable
keyboard interrupt (bit 7)

Byte value at address OxFFFF0014 : receive row and column of the key pressed, 0 if not key pressed

The mips program have to scan, one by one, each row (send 1,2,4,8...) and then observe if a key is pressed
(that mean byte value at adresse OxFFFF0014 is different from zero). This byte value is composed of row
number (4 left bits) and column number (4 right bits) Here you'll find the code for each key :
0x11,0x21,0x41,0x81,0x12,0x22,0x42,0x82,0x14,0x24,0x44,0x84,0x18,0x28,0x48,0x88.

For exemple key number 2 return 0x41, that mean the key is on column 3 and row 1.

If keyboard interruption is enable, an exception is started, with cause register bit number 11 set.

Counter
Byte value at address OxFFFF0013 : If one bit of this byte is set, the counter interruption is enable.
If counter interruption is enable every 30 mstructlons an exception is started with cause register bit number

20 MNAILT » [ Vi
99 LEDleft axffff%ll e
100 .cqv LEDrt, oxffffooleo a sal,

|:> 121 la $a2, LEDrt
101 |.e “‘.V Jeff, Oxoe 122 #--Branch Table
102 .eqv Drob, 0x5e

103 .7aCro push
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ktext ——

# Trap handler in the standard MIPS32 kernel text segment

.ktext 0x80000180
move $k0,$v0 # Save $v@ value
move $k1,%$a@ # Save $a@ value
la $a@, msg # address of string to print
i 9%$vo, 4 # Print String service
syscall
move $v0@,$k@ # Restore $vO
move $a@,$kl # Restore $a@
mfcO® $k0,$14 # Coprocessor @ register $14 has address of trapping instruction
addi $k@,$k0,4 # Add 4 to point to next instruction
mtc@ $k0,$14 # Store new address back into $14
eret # Error return; set PC to value in $14
.kdata
msQ:
.asciiz "Trap generated"
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Figure /7.7.1. Coprocessor 0 registers.

rnemory address at which an offending memory reference occurred

Count 9 timer
Compare ' 11 ' value compared against timer that causes interrupt when they match
[ : 12 _ interrupt mask and enable bits
13 ~exception ype and pendmg urrterrum bits
14 - address of instruction that caused exception

Config 16 configuration of machine
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Figure 7.7.2: The status register (COD Figure

A7.1).
S =
_oa E%
835%s%
SEWRES
15 8 4 10

Interrupt
mask

Figure 7.7.3: The cause register (COD Figure

AT2).
31 15 8 6 2
Branch Pending Exception

delay interrupts code
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Figure 7.7.4: Causes of exceptions.

Camber | Mame | comeotwmmtis

0 ' m interrupt (hardware)

4 | AJEL | address error exception (load or instruction fetch)
5 AdES address error exception (store)

6 IBE bus error on instruction fetch

7 | DBE | bus error on data load or store

8 | ' syscall exception

9 3p breakpoint exception

10 | Rl ' reserved instruction exception

11 | . | COprocessor unimplemented

12 amhmobc overflow exception

. p
15 floating point
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Example 7.7.1: Exception handler.

|.ktext 0x80000180|
mov $k1, $at # Save $at register
sw $a@, save® # Handler is not re-entrant and can't use
sw $al, savel # stack to save $a@, $al
# Don't need to save $k0/$kl

The exception handler then moves the Cause and EPC registers into CPU registers. The Cause and EPC registers are not part of the
CPU register set. Instead, they are registers in coprocessor 0, which is the part of the CPU that handles exceptions. The instruction
mfc@ $k@, $13 moves coprocessor 0's register 13 (the Cause register) into CPU register $k@. Note that the exception handler need
not save registers $k@ and $k1, because user programs are not supposed to use these registers. The exception handler uses the value
from the Cause register to test whether the exception was caused by an interrupt (see the preceding table). If so, the exception is
ignored. If the exception was not an interrupt, the handler calls print_excp to print a message.

mfc@ $kO, $13 # Move Cause into $k@

srl $a0, $ko, 2 # Extract ExcCode field
andi $a@, $a@, Oxf

bgtz $a@, done # Branch ifIEchode is Int (O)I

00V 520. SKO # Move Cause into $30
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Before returning, the exception handler clears the Cause register; resets the Status register to enable interrupts and clear the EXL bit,
which allows subsequent exceptions to change the EPC register; and restores registers $a0, $al, and $at. It then executes the eret
(exception return) instruction, which returns to the instruction pointed to by EPC. This exception handler returns to the instruction
following the one that caused the exception, so as to not re-execute the faulting instruction and cause the same exception again.

done: mfco $k0, $14 # m

addiu $k0, $k0, 4 # Do not re-execute

# _f3 ing instruction
mtcd  $ko, $14 #|EpC |

mtcO $0, $13 # Clear Cause register

mfcO $k0, $12 # Fix Status register
andi $k0, Oxfffd # Clear EXL bit

ori $k0, Ox1 #IEnable interruptsl
mtco $k0, $12

lw $a0d, save® # Restore registers
lw $al, savel
mov $at, $k1

# Return to EPC
.kdata

save: .word 0
savel: .word 0
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Figure 5.7.10: MIPS code to save and restore
state on an exception (COD Figure 5.34).

ave GPR ydd $kl.8s5p, -XCPSIZE # so 3Ce on ack for stat
5w $ XCT_SP{sk] # sSa $sSp on stack
" $v( XCT .y $i # save SvD on stack
# save Svi, Saf, $si,. % | 3
1 $1 XCT RA(S) # save $ra an stack
SOmh.b afhi ‘\'l; v cCopy M)
%) ‘\1 » COpYy LO
SW $vO, XCT_HI{S$k1) # save Hi val n stack
SW $vi, XCT_LO(Sk]) # save Lo va n stack
Save exception mfch $a0. Scr # copy cause 3
registers Sw $a0, XCT_CR{Sk1) # save Scr valu 1 stack
e # save s-: .....
mfcl $a $s # y stat r t
SW $a3, XCT_SR{Sk ¥ save $sr o tack
Set sp DOVE $sp. Skl # sp=sp - XCPSIZE
Enable nested exceptions
and? $v0, $a3, MASKI # SvD = $sr & MASKL, enable exceptions
ntcO $vOD, $sr ¥ $sr = value that enables exceptions




Exception Handler
COMP222 COMP 122: Computer
P&H Ch 5 Architecture and

Assembly Language
Spring 2020

Call C exception handier

Set Sagp nove $ap. GPINI ¥ set $gp 10 point Lo heap area
Call C code nove $a0, $sp # argl = pointer to éxception stach
. v Jjal xCpt_delfiver § call C code 1o handle exception
Restore most Lo $at, $sp # tenporary value of $s5p
GPR. hi. Yo Iw $ra. XCT _RA(Sat # restore $ra from stach
e # restore $t0,...., $al
Iw $a0, XCT_AO($k1) # restore $a0 from stach
Restore status I $vO, XCT_SR{Sat) ¥ load old $sr from stach
registes i $vi, MASKZ # mask to disable exceptions

and $vD, $v0, vl
mtcD $v0, $sr

$vD = $s5r & MASKZ, disable exceptions

set status register

L

Restore §sp I $sp, XCT_SP(sat) # restore $sp from stach
”L: "”'t‘ Iw $vO, XCT_VO($at # restore $vD from stack
l::,mn:;::'d" Iw $vl, XCT_VIi(sat) # restore $v] from stack
registers Iw $kl. XCT_EPC(S2t) # copy 0l1d Sepc from stack

Iw $at. XCT _AT(Sat # restore Sat from stach
Restore RO mtch $kl. Sepc # restore Sepc

and returr eret $ra # return to interrupted instruction
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System Calls

Figure 7.9.1: System services (COD Figure

A9.1).

prlnf int [ $a0 = uneger [

print_float 2 $112 = fioat

print_ _double | gy | $112 = double T

print_string a $a0 = string

read_int 5 integer (in $v0)

read_float 6 | float (in $10)

read_double 7 | double (in $10)

read_string 8 $20 = buffer, $al = length

sbrk 9 $a0 = amount | address (in $v0)

exit 10 '

print_char 11 $20 = char

read_char 12 char (in $v0)

open $a0 = filename (string), file descriptor (in $a0)
13 $al = flags, $a2 = mode

read 14 $a0 = file descriptor, num chars read (in

$al = buffer, $a2 = length $a0)

write $a0 = file descriptor, | num chars written (in
15 $a1 = buffer, $a2 = length $30)

close 16 $a0 = file descriptor

exit2 17 $a0 = result

DR JEFF
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System Calls: SPIM ke

. text

[&1
la
syscall

(&1
[&1
syscall

$v0,
$a0,

$vo,
$ao,

str

H B

H B W

system call code for print_str
address of string to print
print the string

system call code for print_int
integer to print
print it
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What factors influence a processor's clock speed?

@ Jeff Drobman
Lecturer at California State University, Northridge (2016—present) - Just now -

a clock pulse is foremost limited by the fundamental transistor frequency (Ft) and its RC
time constant. a CPU’s maximum clock frequency is limited by the slowest pipeline
stage, with further constraint by thermals (die and package, via theta-JA).
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A transistor has a reaction time of 0.1 ns, a computer has a
frequency of 3Ghz, it means we can only connect up to 30
transistors in a row because each transistor needs to get the
output of the previous one. So how do computers have
billions of them?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
&7 present)

Answered just now

key note is that transistors are now much faster, about 10x faster. and yes, that would
give roughly 30 T delays per clock cycle. in a macro sense, all digital systems, including
computers, are a Finite State machine (FSM) that runs at the CPU clock frequency. each
next state bit must be generated in one CPU clock cycle (0.333 ns for 3 GHz).
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B.S. in Electrical Engineering, lowa State University - 3y

What is the slowest speed a processor can run without causing

arrnrc?

More recent processors using a static core (i.e. able to stop the clock
completely, or run as slow as one wants) are the Intel 80386EX 7' (1994),
designed for embedded systems, and the W65C816S (7, a static version of

the 65C816 processor used in the Apple llgs computer.

Slow Clocks
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B.S. in Electrical Engineering, lowa State University - 3y

What is the slowest speed a processor can run without causing
errors?

The 8-bit RCA 1802 7' (1976) had a static core CMOS design with no
minimum clock frequency, so it could run at very low speeds and low power,
including a clock frequency of zero to suspend the microprocessor without
affecting its operation.

So it could be run, for example, at a clock speed of 1 Hz. Since most
instructions took 16 clock cycles, it would take 16 seconds to execute an
instruction. But it could be run much slower, and still execute (0.1 Hz, 0.01 Hz
etc).

Because the 1802 was released in a radiation-hardened version, it was used in
many spacecraft such as the Galileo spacecraft 4, the Hubble Space
Telescope [, and the Magellan (7' Venus probe among others.
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2]
$2
SYNC
So /
S, L/ /
S; / \ /
T T T2 WAIT T3 STOPPED T4 TS
HIGHER
LOWER 6-BITS EXTERNAL | INSTRUCTION HALT
CPU 8-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF
INTERRUPTED | ADDRESS TWO BITS NOT READY FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL (OPTIONAL) | DATA OUT CPU
ouT (8-BITS)
= TYPICAL PROCESSOR CYCLE -

INCLUDES T1, T2, T3, T4, TS

MCS-8 BASIC INSTRUCTION CYCLE
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INTERRUPT

CPU STATE TRANSITION DIAGRAM
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Clock Sync

Clocks < Cycles
clock speed is normally the frequency that a CPU operates at, and {
inversely, defines the clock period or cycle time. cLock

CPI (clocks per instruction) is the average number of cycles it takes to
execute an instruction — per a given instruction stream.

HIGH-10-LOW LOW-10-HIGH
Set-up | Hold Set-up | Hold

Set-up and Hold Times Relative to Clock (CP) Input.

CP: ' f

Set-up Time Hold Time Set-up Time | Hold Time
Before H— L After H—- L BdonL-HlAth-oH
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Logic

—

TCYC = TCQl _TPD _TSUZ
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Am2900 ==
MINIMUM CYCLE TIME CALCULATIONS FOR 16-BIT SYSTEMS
Speeds used in calculations for parts other than Am29018B are
representative for available MSI parts.
r O e
—
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2-phase clock

SYNC

PLL will multiply
300 MHz xtal freq
Up to 4 GHz

:D} :ﬁ Clocks (multi-phase
XO  HIGH-to-LOW LOW-10-HIGH

M-uplm M-upl Hold

N

Voltage
Phase Lo

Comparator Fil:epl gggitllloaltlgrcl C P U C h i p
> ¢ — Il_ —{veo v,

Simplest analog phase locked loop &7
I
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SR L tes | See | e PLL= Phase Locked Loop
Clock Tree R CIk[1-4] .
e—
N - —|D|— Vref N
- (xtal)
H Clk[1-4]
—| l‘_ Voltage
Elio-Fl Phase Loop Controlled
Eefer ce Ref - :- 'Pa-ndOPS Comparator Filter Oscillator
lock loc
— T = Latch
|—-Feedback PLL istribution, ehes VT> ¢ B. vco Vo
. implest analog phase locked | L=
e o Jitter (ppm) Simplest analog phase locked loop
- s Wander (ppm/day)
o} fou
A chousA ;
'; # )PAN210 .\ |

An example digital divider (by 4) for &J Freq divider (by 4)
use in the feedback path of a multiplying
PLL
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Part Number TN

Filter by part number

MAX31180 Spread-Spectrum
Crystal Multiplier

DS1080L Spread-Spectrum
Crystal Multiplier

NOW PART OF

ANALOG
DEVICES

maxim
integrated.

End Equipment
™N

General Purpose

General Purpose

Output Jitter

Jitter (RMS)
(ps)
N

75

75

fin
(min)
(MHz)
N

16

16

VsuppLY
(V)
N

3.3

3.3

fin
(max)
(MHz)
™

33.4

33.4
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four four
(min) (max)
(MHz) (MHz)
™N ™N
16 134
134 134
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Crystal oscillator

Cluster of natural quartz crystals &3

A synthetic quartz crystal grown by &7
the hydrothermal synthesis, about
19 cm long and weighing about 127 g

_— &
Inside a modern DIP package quartz &J Intemals of a quartz crystal.

crystal oscillator module.lt includes a
ceramic PCB base, oscillator, divider
chip (/8), bypass capacitor, and an AT
cut crystal.
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For the Intel 8080 CPU, use our K1117A.
For the Motorola MC6800 MPU,use our MC6870A,71A or 71B.
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intel

8224
CLLOCK GENERATOR AND DRIVER
FOR 8080A CPU

m Single Chip Clock Generator/Driver for ~ ® Crystal Controlled for Stable System

8080A CPU Operation

a Power-Up Reset for CPU ' = Reduces System Package Count

m Ready Synchronizing Flip-Flop m Available in EXPRESS

m Advanced Status Strobe - Standard Temperature Range

m Oscillator Output for External System = Available in 16-Lead Cerdip Package
Timing (See Packaging Spec, Order #231369)

The Intel® 8224 is asingle chip clock generator/driver for the 8080A CPU. Itis controlled by a crystal, selected by the designer
to meet a variety of system speed requirements.

Also inciuded are circuits to provide power-up reset, advance status strobe, and synchronization of ready.
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RESET [__J1 e ] Vee
E5> . OSCILLATOR ™ 0SsC @ SESIN 5 - : SEPEL
XTAL2 — - C ]
3> TanK — ROYIN[_}3 1l JxTAL2

[: READY [ J4 13 ] TANK
: > SYNC[ | 8224 SC
CLOCK I E 12 ;lo
GEN. --—D——— 09 o>
9 6, (TTL V6 1 F:] ¢4
D 6.A 6 <TTL)[:> _
2 04 2 STSTB[: 5 - p¢2
) GNo [ |8 9 D Voo

Ret

2> REsW L> D
SCHMITT l
WROT et - RESET D RESIN RESET INPUT

3> rovin 5 READY D RESET RESET OUTPUT XTAL 1 CONNECTIONS
RDYIN READY INPUT XTAL 2 FOR CRYSTAL
READY READY OUTPUT TANK USEDWITHOVERTONE XTAL

g SYNC SYNC INPUT 0SC OSCILLATOR OUTPUT
STSTB STATUS STB ¢z (TTL) ¢2 CLK (TTL LEVEL)
(ACTIVE LOW) Vee 5V

?1 8080 Vop 12V
2 CLOCKS | GND ov |
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WAVEFORMS

"_’l A A
¢z f b3 j B t% &v o2
. -

— e o2 o2 —>|
O2(TTL) {

SYNC X / \
(FROM 8080A) |
|
t t .__.4
| t,,w_.,! Dss W
STSTB XL_.%

'oRs — t
'oRH ,,____,I
- m— - | W ——— W — W—— N W— W— W— — W — W— — — — V—— W— O ——W—  — — -
RDYIN OR RE'SIN

READY OUT
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Crystal oscillator types and their abbreviations:

« ATCXO — Analog temperature controlled crystal oscillator
« CDXO — Calibrated dual crystal oscillator

DTCXO — Digital temperature compensated crystal oscillator
EMXO — Evacuated miniature crystal oscillator

GPSDO — Global positioning system disciplined oscillator

« MCXO — Microcomputer-compensated crystal oscillator

« OCVCXO — oven-controlled voltage-controlled crystal oscillator

¢« OCXO — Oven-controlled crystal oscillator

« RbXO — Rubidium crystal oscillators (RbXO), a crystal oscillator (can be an
save power

« TCVCXO — Temperature-compensated voltage-controlled crystal oscillator

« TCXO — Temperature-compensated crystal oscillator

« TMXO - Tactical miniature crystal oscillator!®7]

« TSXO — Temperature-sensing crystal oscillator, an adaptation of the TCXO

« VCTCXO — Voltage-controlled temperature-compensated crystal oscillator

« VCXO — Voltage-controlled crystal oscillator
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The problem arise from 3 main sectors - BEOL RC delay, thermal
consideration and product reliability.

1.E+05
rl
o —
1.E+04 . —.
Interconnect RC
1.E+03
3 ~1000x
:g. 1.E+02 .
a RC dominant
1.E+01
T ———
Transistor delay - - .
1.E-01
N90 N65 NA45 N28 N20 N16 N10 N7

BEOL has become the main bottleneck in CPU performance - once we've
passed the 22 nm node. Basically we have state-of-the-art transistors that
do not get enough “juice” because the interconnects are too slow
(combination of resistivity and parasitic capacity).
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FEOL

BEOL

-WWM\

persode

RSFIEADM+

RCXTENSJON'

Per side
CFEOL
Back end R
Back end C

Q-um 46

Q-pm

aF/um
Q/pm
aF/um

51

750
27
19.8

47 28 25

800 690 750

72 173

17.1 165 160

Greg Yeric, ARM (IEDM 2014)
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Analog Bits

Package Pin-less PLLs Benefit Overall Chip PPA
by Tom Simon on 08-19-2021 at 6:00 am
Categories: Analog Bits, IP

SOCs designed on advanced FinFET nodes like 7, 5 and 3nm call for silicon-
validated physical analog IP for many critical functions. Analog blocks have always
been node and process specific and their development has always been a
challenge for SOC teams. Fortunately, there are well established and endorsed
analog IP companies like Analog Bits that provide high performance analog IP that
is ready to use for just about every process. | had a conversation recently with
Mahesh Tirupattur, executive VP of sales and marketing at Analog Bits, where we
discussed their PLL portfolio. Clocking requirements have grown substantially, and
this has led to diversity in their PLL product line.

Mahesh touched upon new PLLs needed for PCle. Their PCle Gen3 PHY is based
on aring oscillator and Gen4/5 PLL uses an LC tank. They have also added high
performance PLLs for chip-to-chip interfaces that operate at 20GHz for advanced
FinFET nodes. As further illustration of the diversity now required in PLLs he
pointed to ultra-low power PLLs for loT and radiation hardened chips for military
and space applications. Not only have the number of types of PLLs for specific
applications grown, but the sheer number of PLLs needed to provide clocking
across and throughout an SOC has increased.
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Ansys, Inc.

Have STA and SPICE Run Out of Steam for Clock Analysis?
by Tom Simon on 08-20-2021 at 6:00 am

Categories: Ansys, Inc., EDA

1 Comment

At advanced nodes such as 7 and 5nm, timing closure and sign off are becoming
much more difficult than before at 16nm. One area of chips that has increased in
complexity dramatically and who's correct operation is essential for silicon
success is the clock tree. If the clock tree has excessive jitter, it will throw off every
timing parameter on the chip and can lead to failure. Clock jitter has become a
much larger issue in particular because of the influence of simultaneous switching
noise (SSN) and stress on the power deliver network (PDN), both of which have
become difficult to manage with higher chip complexity and lower operating
voltages.

Ansys recently broadcast an interesting webinar titled “Got Clock Jitter - It's
Worse Than You Think”, that explores the causes of clock jitter at advanced nodes
and discusses their approach to providing effective analysis so that problems can
be identified before tape out. The presenter, Vinayakam Subramanian, does an
excellent job of discussing this important facet of chip design.
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NIST-F1 is a cesium fountain
clock, a type of atomic clock, in

< the National Institute of Standards
0’0 P LL (Phase_loc ked Loop) Fl and Technology (NIST) in Boulder,
Colorado, and serves as the
United States' primary time and
frequency standard. The clock

took less than four years to test

Vaitage Frequency stability metrics  anosuia.andwas seveine

Phase Loop Controlled
Comparator Filter Oscillator

s Jitter (ppm)
vT"'¢ B_ VCOo =9, s Wander (ppm/day)

! > stratum 1/2/3/4.

Simplest analog phase locked loop &J

NI ST F2 NIST physicists Steve Jefferts &
N 1 (f d) and Tom H ith th
’:’ U S AtO m | C C I O C k ( N I ST‘ F 1 / 2 ) N(I);eT?l?Zu:esiinm fozr:tai: :\tlgr?\ri:v (l:lock.ea

From Wikipedia, the free encyclopedia civilian time standard for the United
P ' States.

NIST-F2 is a caesium fountain atomic clock that, along with NIST-F1, serves as the United States' primary time and frequency
standard.l' NIST-F2 was brought online on 3 April 2014.[112]

Accuracy | edit) al

NIST-F1, a caesium fountain atomic clock used since 1999, has a fractional inaccuracy (3f /1) of less than 5 x 10~16,

The planned performance of NIST-F2 is 8f/f< 1 x10~16.[3] At this planned performance level the NIST-F2 clock will not lose a
second in at least 300 million years.

300,000,000 years!
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How are clocks calibrated? ppb

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
&7 present)

Answered just now

the prime metric of clocks is stability. NIST has 5 levels of stability, called Strata, and
measured in parts per billion (ppb). Stratum 1 is the US atomic clock operated by NIST
in Boulder, CO and broadcast from Ft. Collins. Stratum 2 are generated in each GPS
satellite, and are used to provide you clocks via cell phones and cable boxes.

+* Stratum 1 =2 Atomic
s Stratum 2 = GPS = phones, cable boxes
+* Stratum 3 = Telco Stations
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List of atomic clocks

From Wikipedia, the free encyclopedia

This is a list of some experimental laboratory atomic clocks worldwide.

This list is incomplete; you can help by expanding it.
Image Name Location

Physikalisch-Technische Bundesanstalt

CS1, CS2, CSF1, CSF2! )
Braunschweig, Germany

Federal Institute of Metrology
Wabern, Switzerland

FOCS

National Physical Laboratory

NPL-CsF2, Yb+ and Sr+ ion clocks, Sr lattice clock, 4 hydrogen masers [21I3] . . ,
Teddington, London, United Kingdom

NIST Boulder Laboratories

NIST-F114], NIST-F215]
Boulder, Coloradol®!

Schriever Air Force Base

USNO Alt te Master Clock
s ernate Master Lioc El Paso County, Colorado!”)

wWwvB

Wwwv )
Larimer County, Colorado!®]

United States Naval Observatory

Department of Defense master clock )
Washington, D.C.

National Institute of Information and Communications Technology

18 cesium atomic clocks and 4 hydrogen maser clocks ) 9
Koganei, Japan(®]
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T? Vijay Kumar Kanchukommala - Follo
(;"J RTL Design Engineer (2018-present)

Always-On Logic Cells
Categorization of power domains

In Multivoltage soc designs can contain power domains. Some of the power domains are
always on and some power domains that can be switched off.

e The power domains that can never be switched off are called always-on power
domains.

¢ And the other power domains which switched off are called power-down
domains When a power domain is switched off, all cells in the power domain are
switched off.

In some of the power-down domains, logic cells need to remain powered on even
when the power domain is switched off. Such cells are referred to as always-on
cells.The control signals of such logic cells should also be powered on when the
power domain is switched off. These control signals are called always-on paths.
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Always-on cells can be of two types:

e Single Power Standard Cells: Buffers and inverters from the standard cell
libraries can be used as always-on cells.

e Dual Power Special Cells: Special cells in the target library, such as buffers and
inverters with dual power, can be used for always-on logic.Only buffers and
inverters can be used as dual-power, always-on cells. They must have two rails
connections: a primary rail that is connected to a shut-down power supply, and a
secondary rail that is connected to an always-on power supply.
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Delving into the first step, the fresh run analyzes the clock domain from the output of
a PLL, all the way through to flip-flops or output pads. This clock domain can be quite
large in size with millions of devices, and the transistor-level analysis results show us
the delay and slew values.

Clock Domain , ) .
Spice Accuracy Simulation

L
. Clock Domain ransistor '
- e
=l Every - JU Tl
o, i Clock ' reel! . '
‘ > - Node Tl . '
’ ’ : ] | !ew:

Step 1: Fresh Run

The ClockEdge tool can run clock analysis for a fresh run on a block with 4.5 million
gates, 517 million MOSFETs and 3.2 billion devices overnight, by using a distributed
SPICE simulation approach. Your clock topology can be implemented as trees, grids
and spines.
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The final analysis is Step 3, using the Aged devices. For the case of devices that had a
parked clock value, then only one edge of clock will be affected during aging analysis,
while devices with clock toggling will have both edges affected during aging analysis.
So the Duty Cycle Delay (DCD) shape will depend on your circuit topology.

+ DC stress affects one clock edge —

¢ AC stress affects both clock edges Output before aging |  ¢q0, ncp
Parked at OV Stressed
Vdd Q- 0 0 o9
< @ & 66% DCD
) v a i ;i s !
AC Stressed Added delay
Vddo < oo :
o o 10 1%
DA< UASWASS #50% DCD
Yvw‘,{j "",, ’.',‘ /
A el e!
Step 3, Aged Simulation

With ClockEdge a designer can perform what-if stress analysis, comparing the impact
of a clock parked at O, parked at 1, toggling, or even a combination of parked and
toggling.
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Processor State
(PSW)
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Control & Status Data
I O O I R
? W i R R/W
Control Status Data
D flip-flop symbol D—Ib © o a

C|OCk°-I—E—G—£ | J—E Q

A master—slave D flip-fiop. It responds on the taling &7
edge of the enable input (usually a clock)

An implementation of a master—siave D fip-fiop that 57
is triggered on the rising eage of the clock
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Figure 7.7.1: Coprocessor 0 registers.

| = CR—
name number

BadVAddr 8 memory address at which an offending memory reference occurred
Count ‘ 9 timer
Compare . 11 ' value compared against timer that causes interrupt when they match
Status 12 . interrupt mask and enable bits
13 exception type and pending interrupt bits

EPC 14 ~address of instruction that caused exception
Config configuration of machine
Figure 7.7\2: The status register (COD Figure
Interrupt handler. A piece of code that is run as a result of an exception or an interrupt.
Exception handler -§ B
-.a%_ g8
PSW 385828
15 8 4 10
fclviv/z 0
Interrupt |E
Flags ke

Interrupts(8) User/system
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Figure 7.7.3: The cause register (COD Figure
A7)

31 15 8 6 2
Branch Pending Exception
delay interrupts code

Figure 7.7.4: Causes of exceptions.

0 “ ' interrupt (hardware)

4 | AdEL ’ address error exception (load or instruction fetch)

5 | AJES | address error exception (store) 1
6| BE | bus eroron insvuction feich

7 | DBE | bus error on data load or store

8 | | Sys | | syscall exception

9 Bp breakpoint exception

10 . RI . reserved instruction exception

11 . CpU . coprocessor unimplemented

12 . Ov A arithmetic overflow exception

13| trap

15 FPE___ | foating point



@ DR JEFF
Q SOFTWARE
A R |V| o i

2020-23
ARMvV7 -

CSUN
COMP222
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Registers
SP
LR
PC

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Sixteen generic 32-bit registers

~ Thirteen are for general purposes
» Can hold data or address
» Data may be byte, halfword, or word
- Three have a special purpose

» R13 is the stack pointer
- R14 is the link register
- R15 is the program counter

)1: ARM Cortex-M Instruction Set Architecture
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Register
number on call?

X0-X7 Arguments/Results no
X8 8 Indirect result location register no
X9-X15 9-15 Temporaries no

16 May be used by linker as a scratch. register,; Za
X16 (IPO) other times used as temporary register

17 May be used by linker as a scratch register; s
X17 (IP1) other times used as temporary register

18 Platform regi§ter for platform indgpendent e
X18 code; otherwise a temporary register
X19-X27 19-27 Saved yes
X28 (SP) 28 Stack Pointer yes
X29 (FP) 29 Frame Pointer yes
X30 (LR) 30 Link Register (return address) yes
XZR 31 The constant value O n.a.
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The Current Program Status Register (CPSR) has the following 32 bits.

« M (bits 0—4) is the processor mode bits.

e T (bit 5) is the Thumb state bit.

F (bit 6) is the FIQ disable bit.

| (bit 7) is the IRQ disable bit.

A (bit 8) is the imprecise data abort disable bit.

E (bit 9) is the data endianness bit.

IT (bits 10-15 and 25-26) is the if-then state bits.
GE (bits 16—19) is the greater-than-or-equal-to bits.
DNM (bits 20-23) is the do not modify bits.

« J (bit 24) is the Java state bit.

JE (bit 27) is the sticky overflow bit.

bit 28) is the overflow bit.

(bit 29) is the carry/borrow/extend bit.

Z (bit 30) is the zero bit.

ﬂ[bit 31) is the negative/less than bit.

-
<

Flags

.
O
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IFile Options Tools Help

Platform:
Frequency:
VID:
Revision:
CPUID:

| Select CPU: ’Processor #0 v HT Core(s) ,T Thread(s)
Processor Information

Model:

Intel Core i7 3770K (Ivy Bridge) (ES)

LGA 1155 (Socket H2)

3899.59MHz (99.99 x 39.0)

1.1158 v Modulation:

El Lithography:

0x306AS9 TDP:

Processor #0: Temperature Readings

Tj. Max:

Power:
Core #0:
Core #1:
Core #2:
Core #3:

105°C

10.8 watts

41°C

37°C

39°C

33°C
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e Brett Bergan X
Building PC's for 25 years - March 17

How many watts does a CPU use?

Many mobile CPU's are designed/configured to run on 15W. At 2.5GHz a
processor can be extremely thrifty. The 1.6-2.7GHz Gemini Lake Celerons
(J4105, J4115, J4125) used in the recent spate if “pico” PCs use about 4.8W
under typical gaming loads.

With extensive use of the 3.3GHz i3-2120 desktop CPU, I've never seen one
use over 28.5W—but normal behavior is to throttle to 1.6GHz when under light
use, where it uses about 7W on idle and 12-15W under sporadic light use.
22W seems to be a frequent stat that | have seen in gaming. 22W is common
to see on a quad core i5 for gaming.
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A dual core can use 22W in gaming just as easily as a CPU with double the
cores, because each core has to work harder. A quad like the i5-2500 can
ramp up to 56W, which you may note is double the power of the 28W peak of
the iI3-2120. When a dual-core hits 28W in gaming it begins to bottleneck the
graphics card because it just can’t work any harder. But a quad core has tons
of headroom above that 30W ceiling of the dual core.

The six core CPU's at 7nm like the R5 3600 probably hit 70W, but it takes a
ton of processing to push them that hard. By contrast, the 14nm six-core i5—-
10600K has a power ceiling set to 182W and can use 2.5X as much power as
the Ryzen.
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With Zen 3, AMD raised the power ceiling for the 5600X to 95W in order to
allow it to hit 4.6GHz, where the 3600XT only reaches 4.5GHz with a 95W
TDP. For the sake of comparison, the eight core 3700X reaches a total
package limit at 88W at its single core turbo peak of 4.4GHz. To
accommodate the additional boost clocks, the 5800X has a TDP of T05W.

Remarkably, the 16-core/32-thread 5950X hits 4.9GHz and still maintains the
same 105W TDP. But despite their design constraint of 142W the 5900X and
5950X have been shown to hit 158 W with Power Boost Overdrive (PBO)
enabled—which is amazingly still below the stock i9-10900K at 170W in the
same test.

In this test, the $2000 Intel iI9-10980XE* used a stunning 285W. At stock
settings the 18-core 10980XE barely edges out the 5900X in Cinebench R20.
The 5900X uses its 142W peak for exactly half the wattage of the behemoth
Intel CPU.
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In this test, the $2000 Intel iI9-10980XE* used a stunning 285W. At stock
settings the 18-core 10980XE barely edges out the 5900X in Cinebench R20.
The 5900X uses its 142W peak for exactly half the wattage of the behemoth

Intel CPU.

Cinebench R20 - Multi-thread & single thread score

Intel Core i9-10980XE .

AMD Ryzen 9 5900X e

In single core, the differance is 27%. In multi-core, the differential gap is 5%.

Comparing these scores to the Threadripper 3990X shows how amazing the
Zen 2 architecture is. The 64-core TR 3990X manages a Cinebench R20 score
of 24,608 using 435W—That is essentially triple the performance of Intel's
10980XE, using only 50% more power.



