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Overview of the AMDG64 Architecture

The AMD64 architecture is a simple yet powerful 64-bit, backward-compatible extension of the
industry-standard (legacy) x86 architecture. It adds 64-bit addressing and expands register resources
to support higher performance for recompiled 64-bit programs, while supporting legacy 16-bit and 32-
bit applications and operating systems without modification or recompilation. It is the architectural
basis on which new processors can provide seamless, high-performance support for both the vast body
of existing software and 64-bit software required for higher-performance applications.

The need for a 64-bit x86 architecture is driven by applications that address large amounts of virtual
and physical memory, such as high-performance servers, database management systems, and CAD
tools. These applications benefit from both 64-bit addresses and an increased number of registers. The
small number of registers available in the legacy x86 architecture limits performance in computation-
intensive applications. Increasing the number of registers provides a performance boost to many such
applications.
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1.1.1 AMDG64 Features

The AMDG64 architecture includes these features:

Register Extensions (see Figure 1-1 on page 2):

8 additional general-purpose registers (GPRs).
All 16 GPRs are 64 bits wide.

8 additional YMM/XMM registers.

Uniform byte-register addressing for all GPRs.

An instruction prefix (REX) accesses the extended registers.

Long Mode (see Table 1-1 on page 2):

Up to 64 bits of virtual address.

64-bit instruction pointer (RIP).
Instruction-pointer-relative data-addressing mode.
Flat address space.
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register high  low

encoding 8-bit 8bit 16-bit  32-bit
0 AH@#) | AL AX EAX
3 BH7| BL | BX EBX
1 CHe)| CL CX ECX
2 DH )| DL DX EDX
6 SI SI ESI
7 DI DI EDI
5 BP BP EBP
4 SP SP ESP

3] 16 15 0

FLAGS FLAGS EFLAGS

IP IP EIP

31 0
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63 32 73] 16 15 8 7 0
Gray areas are not modified in 64-bit mode. AH* AL
0 AX
0 EAX
RAX
BAY BC |
7 BX
0 EBX
RBX
——_CH%!_T'
| X
0 ECX
RCX
- T7nF 71 o1
5 DX
0 EDX
RDX
I
Sl
6 0 ES]
RSI
- __T1mr
DI I
! 0 EDI
RDI
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General-Purpose 64-Bit Media and SSE Media

Registers (GPRs) Floating-Point Registers Registers
RAX MMXO0/FPRO YMM/XMMO
RBX MMX1/FPR1 YMM/XMM1
RCX MMX2/FPR2 YMM/XMM2
RDX MMX3/FPR3 YMM/XMM3
RBP MMX4/FPR4 YMM/XMM4
RSI MMX5/FPR5 YMM/XMM5
RDI MMX6/FPR6 YMM/XMM6
RSP MMX7/FPR7 YMM/XMM7
R8 79 0 YMM/XMM8
R9 YMM/XMM9
R10 Flags Register YMM/XMM10
R11 0 |[EFLAGS] RFLAGS YMM/XMM11
R12 YMM/XMM12
Rz ° YMM/XMM13
R14 Instruction Pointer YMM/XMM14
R15 EP | rRP YMM/XMM15

63 0 63 0 255 127 0

|:| Legacy x86 registers, supported in all modes Application-programming registers not shown include

Media eXension Control and Status Register (MXCSR) and
|:| Register extensions, supported in 64-bit mode x87 tag-word, control-word, and status-word registers
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Quadword in Memory byte 7 | 07h < High (most-significant)
byte 6 | O6h
byte 5 | 0sh
byte 4 | 04h
byte 3 | 03h
byte2 | o2h
byte 1 | oth
byteO | 0oh <— Low (least-significant)
High (most-significant) Low (least-significant)
v Quadword in General-Purpose Register !

byte7 | byte6 | byte5 | byte4 | byte3 | byte2 | bytel byte 0

63 0



F..-A-MD64 PC=IP Reglster

Telescoping R/EIP —

COM P222 AMDA
AMDG64 Technology

‘Rev. 3.23—October 2020

09h <«— High (most-significant)

DR JEFF

PPPPPPPPPPPPPP

© Jeff Drobman
2017-22

EIP

riP

0sh
07h
06h
RIP
05h 63 32 3

04h

03h

02h

01h

00h <«— Low (least-significant)

Figure 2-10. Instruction Pointer (rIP) Register

Figure 2-6. Example of 10-Byte Instruction in Memory
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Legacy Mode and 64-Bit
Compatibility Mode Mode
CS
S (Attributes only)
DS Ignored
ES Ignored
FS
FS (Base only)
GS
GS (Base only)
SS ignored

15 0 15 0

Figure 2-2. Segment Registers
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64-Bit Mode Compatibility Mode

63 0

| Virtual (Linear) Address I Effective Address

Segmentation

63 32 31 0

0 Virtual Address I

v v

51 0 51 0

| Physical Address I | Physical Address I

Figure 2-3. Long-Mode Memory Management
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64-Bit Mode
(Flat Segmentation Model)
2541
Legacy and Compatibility Mode
)% (Multi-Segment Model)
(S N pe— 324
Code Segment (CS) Base -} - - - - ode
)4
/1
Stack Segment (SS) Base —»
Base Address for
All Segments . o  DataSegment (DS) Base —»

Figure 2-1. Virtual-Memory Segmentation
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3.3.1 Syntax

Each instruction has a mnemonic syntax used by assemblers to specify the operation and the operands
to be used for source and destination (result) data. Figure 3-7 shows an example of the mnemonic
syntax for a compare (CMP) instruction. In this example, the CMP mnemonic is followed by two
operands, a 32-bit register or memory operand and an 8-bit immediate operand.

‘Rev. 3.23—October 2020

CMP reg/mem32, imm8

Mnemonic

First Source Operand
and Destination Operand

Second Source Operand

Figure 3-7. Mnemonic Syntax Example
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3.2.5 Data Alignment

A data access is aligned if its address 1s a multiple of its operand size, in bytes. The following
examples illustrate this definition:

. |Byte accesseq are always aligned. Bytes are the smallest addressable parts of memory.
o |Word (two-byte) accesses are aligned if their address is a multiple of 2.

e |Doubleword [four-byte) accesses are aligned if their address 1s a multiple of 4.

* |Quadword (ejght-byte) accesses are aligned if their address 1s a multiple of 8.

Most others Java

= Byte = Byte

= Halfword = Short
= Word " |nt

= Doubleword " long
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Signed Integer

127 0
5 16 bytes (64-bit mode only)
s 8 bytes (64-bit mode only)
63 s 4 bytes
31 s 2 bytes
15 s
7 0

nsigned Integer
127 Unsig g 0

16 bytes (64-bit mode only)

8 bytes (64-bit mode only)

63 4 bytes

31 2 bytes

15

]

Double
Quadword

Quadword
Doubleword
Word

Byte

Double
Quadword

Quadword
Doubleword
Word

Byte

Packed BCD
BCD Digit
Bit
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The following data types are supported in the general-purpose programming environment:
e Signed (two's-complement) integers.

e Unsigned integers.

 BCD digits.

e Packed BCD digits.

e Strings, including bit strings.

e Untyped data objects.
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The Architecture defines the following fundamental data types:

Untyped data objects

bit

nibble (4 bits)

byte (8 bits)

word (16 bits)

doubleword (32 bits)

quadword (64 bits)

double quadword (octword) (128 bits)
double octword (256 bits)

Unsigned integers

8-bit (byte) unsigned integer

16-bit (word) unsigned integer

32-bit (doubleword) unsigned integer
64-bit (quadword) unsigned integer
128-bit (octword) unsigned integer

Signed (two's-complement) integers

Binary coded decimal (BCD) digits
Floating-point data types

half-precision floating point (16 bits)

8-bit (byte) signed integer

16-bit (word) signed integer

32-bit (doubleword) signed integer
64-bit (quadword) signed integer
128-bit (octword) signed integer

single-precision floating point (32 bits)

double-precision floating point (64 bits)
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Multiply and Divide

e MUL—Multiply Unsigned
e IMUL—Signed Multiply

e DIV—Unsigned Divide

e IDIV—Signed Divide
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Table 1-1. Operating Modes

o Defaults Typical
Operating Application Add o) d | Register
Operating Mode : Recompile iress | Lperan : GPR
System Required Required Size Size | Extensions Width (bit
(bits) (bits) 'dth (bits)
64-Bit yes 64 yes 64
Long Mode , 32
— 64-bit OS
Mode | Compatibility no 32 no -
Mode 16 16 16
Protected 32 32 32
Mode . 16 16
Legacy 32-bit OS
Legacy | Virtual-8086 no no
Mode |Mode 16 16 16
Real :
Mode Legacy 16-bit OS




DR JEFF

&) sor ware
r"ﬂ%ﬂ D64: FPU Instructions © eff brobman
COMP222 :ﬂzzr Rev. 3.23—October 2020 ——— . ecE
echnology
¢ MMX
1.1.5 Floating-Point Instructions * Legacy

The AMD64 architecture provides three floating-point instruction subsets, using three distinct register
sets:

e SSE instructions support 32-bit single-precision and 64-bit double-precision floating-point
operations, in addition to integer operations. Operations on both vector data and scalar data are
supported, with a dedicated floating-point exception-reporting mechanism. These floating-point
operations comply with the IEEE-754 standard.

e MMX Instructions support single-precision floating-point operations. Operations on both vector
data and scalar data are supported, but these instructions do not support floating-point exception
reporting.

e x87 Floating-Point Instructions support single-precision, double-precision, and 80-bit extended-
precision floating-point operations. Only scalar data are supported, with a dedicated floating-point
exception-reporting mechanism. The x87 floating-point instructions contain special instructions
for performing trigonometric and logarithmic transcendental operations. The single-precision and
double-precision floating-point operations comply with the IEEE-754 standard.

Maximum floating-point performance can be achieved using the 256-bit media instructions. One of



DR JEFF

‘ &) sor rwaze
TTTTTTTTTTTTTTTTT WA MD64: Move Data Oeffrobmar

coMP222 [AMDZ Rev. 3.23—October 2020
AMD64 Technology

3.3.2 Data Transfer

The data-transfer instructions copy data between registers and memory.

Move

e MOV—Move

e MOVBE—Move Big-Endian  LE default

e MOVSX—Move with Sign-Extend

e MOVZX—Move with Zero-Extend

e MOVD—Move Doubleword or Quadword

e MOVNTI—Move Non-temporal Doubleword or Quadword
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3.3.5 Load Effective Address
e [EA—I oad Effective Address

LEA is related to MOV, which copies data from a memory location to a register, but LEA takes the
address of the source operand, whereas MOV takes the contents of the memory location specified by
the source operand. In the simplest cases, LEA can be replaced with MOV. For example:

lea eax, [ebx]

has the same effect as:

nov eax, ebx | Base I | Index I | Displacement I

* Scaleby1,2,4,0r8

|
+
| Effective Address I

Figure 2-7. Complex Address Calculation (Protected Mode)
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Mnemonic Required Flag State Description
CMOVAE Conditional move if above or equal
CMOVNB CF=0 Conditional move if not below
CMOVNC Conditional move if not carry
CMOVE ZF = 1 Conditional move if equal
CMOVZ Conditional move if zero
CMOVNE ZE =0 Conditional move if not equal
CMOVNZ - Conditional move if not zero
CMOVBE CF = 1 or ZF = 1 Conditional move if below or equal
CMOVNA Conditional move if not above
CMOVA _ _ Conditional move if not below or equal
CMOVNBE CF=0andZF =0 Conditional move if not below or equal
CMOVS SF =1 Conditional move if sign
CMOVNS SF=0 Conditional move if not sign
CMOVP PFE = 1 Conditional move if parity
CMOVPE Conditional move if parity even
CMOVNP PE = 0 Conditional move if not parity
CMOVPO Conditional move if parity odd
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In assembly languages, the conditional move instructions correspond to small conditional statements
like:

IFa=bTHENXx =y

CMOVcc instructions can replace two instructions—a conditional jump and a move. For example, to
perform a high-level statement like:

IF ECX = 5 THEN EAX = EBX

without a CMOVcc instruction, the code would look like:

cnp ecx, 5 ; test 1f ecx equals 5

jnz Continue ; test condition and skip if not net
nov eax, ebx ; nove

Cont i nue: ; continuation

but with a CMOVcc 1nstruction, the code would look like:

cnp ecx, 5 ; test if ecx equals to 5
cnovz eax, ebx ; test condition and nobve

Replacing conditional jumps with conditional moves also has the advantage that it can avoid branch-
prediction penalties that may be caused by conditional jumps.



DR JEFF
SOFTWARE

p-QMuD64 Stack Instructions — “ze

coMP222 [AMDZ Rev. 3.23—October 2020
AMD64 Technology

Stack Operations

e POP—Pop Stack

e POPA—Pop All to GPR Words

e POPAD—Pop All to GPR Doublewords

e PUSH-—Push onto Stack

e PUSHA—Push All GPR Words onto Stack

e PUSHAD—Push All GPR Doublewords onto Stack
e ENTER—Create Procedure Stack Frame

e LEAVE—Delete Procedure Stack Frame
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I¥F A =B THEN GOIO FarLabel > Jump vs Branch
where FarLabel 1s located in another code segment, use the opposite condition
jump before the unconditional far jump. For example:

compare cnp A, B ; compare operands
NextInstr ; continue programif not equal

j ne
skip j np far ptr WienNE ; far junmp 1f operands are equal
NextInstr: ; continue program
Loop

e LOOPcc—Loop if condition
The LOOPcc instructions include LOOPE, LOOPNE, LOOPNZ, and LOOPZ.’

Call
e (CALL—Procedure Call
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63 32
Reserved, RAZ
31 121110 9 8 7 6 5 4 3 1 0
O|D S|Z A P C
See Volume 2 for System Flags ElE FlE E E E
Bits Mnemonic Description R/W
11 OF Overflow Flag R/W
10 DF Direction Flag R/W
7 SF Sign Flag R/W C V N Z
6 ZF Zero Flag R/W
4 AF Auxiliary Carry Flag R/W
2 PF Parity Flag R/W PDAC
0 CF Carry Flag R/W

Figure 3-5.

rFLAGS Register—Flags Visible to Application Software
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Set and Clear Flags

e CLC—<Clear Carry Flag

e CMC—Complement Carry Flag
e STC—Set Carry Flag

e CLD—<Clear Direction Flag

e STD—Set Direction Flag

e CLI—Clear Interrupt Flag

e STI—Set Interrupt Flag
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3.3.19 System Calls

MIPS: syscall ARM: SWI/SVC

System Call and Return

e SYSENTER—System Call

e SYSEXIT—System Return

e SYSCALL—Fast System Call
e SYSRET—TFast System Return
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Interrupts and Exceptions

e INT—Interrupt to Vector Number

e INTO—Interrupt to Overflow Vector

e [RET—Interrupt Return Word

e [RETD—Interrupt Return Doubleword
e JRETQ—Interrupt Return Quadword



CSUN : SOFTWARE
=)
<izomeer¥1DO41 Int Instructions e

2017-22
coMP222 [AMDZ Rev. 3.23—October 2020
AMD64 Technology

Endian Conversion Little € = Big
e BSWAP—Byte Swap

31 24 23 16 15 8 7 0

- @

31 24 23 16 15 8 7 0

Figure 3-8. BSWAP Doubleword Exchange
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General 1/0

e IN—Input from Port > 1/O may also be MMIO
e  OUT—Output to Port " use MOV
String 1/O

e INS—Input String

e INSB—Input String Byte

e INSW—Input String Word

e INSD—Input String Doubleword
e OUTS—Output String
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> Onion Skin model

Memory Management
File Allocation
Interrupt Handling

Device-Drivers

Privilege ) «
/ Library Routines

> Kernel 0

Privilege 1

Privilege 2

Privilege 3 Application Programs

> User

Figure 3-9. Privilege-Level Relationships



