CSUN B8 soFrware

/DI
AAAAAAAAAAAA)

< Computer Science/Engr ==

Introduction To

Technology

By
Dr Jeff Drobman

CSUN B soFrware

CALIFORNIA
STATE UNIVERSITY I I I d eX ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

¢ Data Codes 2 slide 5 Nehl < Algorithms = slide 147
**» Hardware Models = slide 22 B¥[ejakl ** Cryptography =2 slide 174 Rifl2e}:\;
** CPU Performance -2 slide 38 ** Theory = slide 180

+»* Parallelism/Other HW - slide 41

< Software Models = slide 47 < Code Structure = slide 183 JEARES
¢ Top-down A/D -2 slide 53 ¢ Others: C, VB = slide 194 OTHER
¢ Program Models - slide 58 ¢ Design Patterns = slide 208

¢ Software Engr -2 slide 62 ** Web Apps =2 slide 211

** SDLC - slide 66 ** Assembly Level - slide 229

¢ Debugging & Testing = slide 75
¢ Project Mgt = slide 82

& HLL > slide 87
% Hello World = slide 98 JAVA & HLL'S
s C++ vs Java =2 slide 103

** Java =2 slide 120

+* Platforms = slide 129

+» Tools: SDK/IDE = slide 134

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

K/ / / /
000 000 000 000

e

*

*

4

L)

K/ K/
000 000

K/ K/
000 000

J J/ J/ J/
000 000 000 000

% DR JEFF
SOFTWARE

Computer Science Su b-Fieldgrar

Problem solving and Algorithms
5 8 1st course

Programming (OOP)
Software Engineering (SDLC, IPO, structured design, design patterns) & sy
Automata theory
Systems programming
o OS (shell, kernel, 1/0)
o Compiler construction

Data Application Realms
o Database management & models (DBMS)

o Data science & Mining ’E’ Desk.top
Graphics (gaming, VR) “** Mobile
Al ** Website

o Game playing with Heuristics % Embedded

o Machine learning (Deep learning)
o Pattern recognition (fingerprints, facial, etc.)

Cryptography & Cybersecurity
Simulation & Modeling
o Queueing theory
Digital System design (logic design)
Computer Architecture (ISA, SIMD, caches, multi-threading) Computer Engineering
Numerical Analysis & Control (DNC)
Information Technology (IT/CIT)

) DR JEFF
SOFTWARE

CALIFORNIA : : INDIE APPDEVELOPER
STATE UNIVERSITY I g I a yS e I I l S ©2016-19 Jeff Drobman

NORTHRIDGE

INTRO

\J 'A'Ne

7-Level
STACK HIERARCHICAL MODEL OF
LEVELS OF DESIGN
OF DIGITAL SYSTEMS / \

LEVEL EXAMPLES

7 User Data «doc, .xds files

Layers

6 Applications | microsoft WoRD,

Middle Ware | microsort .NET Levels
> ™ | Composition

SOFTWARE §

Controller

processoR 3 [NITTSSSTIM inteiAMD pentiun
ARCHITECTURE 1SA WP, Sparc _)
HARDWARE
oL 2 LOGIC Logic Design
f)

ANALOG 1

NOTE: FIRMWARE is any embedded software, such as miciop! 7
‘Copyright 2008 Jefiey H. Drobman - all ights reserved

Computer
Engineering

s Archi r - '

. ¢ .teCtu? Hard disk Computer

** Physical design Sci
cience

Flash
EEPROM

s Algorithms
s Theory

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Software — Data

@ DR JEFF
Ig|SOFTWARE

©2016-19 Jeff Drobman

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Ordinals

are DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

Technical ordinals
10~(-24)
10~(-21)
10~(-18)
10~(-15)
10~(-12)
10~(-9)
10~(-6)
10~(-3)
10~(-2)
10~(-1)

107~(+1)
107°{(+2)
10~(+3)/2~(10)
10~(+6)/2~(20)
10~(+9)/2~(30)
10~(+12)/2~(40)
10~(+15)/2~(50)
10~(+18)/2~(60) exa
10~(+21)/2~(70)
10~(+24)/27~(80)

107(29)/27(100) geo

Gazillions

107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107
107

+6) million
+9) billion
+12) trillion
+15) quadrillion
+18) quintillion
+21) sexillion
+24) septillion
+27) octillion
+30) nonillion
+33) decillion
+36) undecillion
+39) duodecillion
+42) tredecillion
+45) quattuordecillion
+48) quindecillion
+51) sexdecillion

) septendecillion
+57) octodecillion
+60) novemdecillion
+63) vigintillion
107(+100) googol
107(+303) centillion
107(107(+100))
googolplex

+54

o~ — — — — — — — — — — — — — — — — —

Power | Power
of 2 of 10

1024

1M
1G
1T

220

230
240

10°©
10°

1012

1,048,576
1.074x10°

1.0995x1012

mnm

byte
short
word
long

IPv6

216
232

264
2128

64K

4B
16 Q
340 ubD

65,536
4.3x10°
1.84x10%°
3.4x1038

CSUN = sg_IETJ\Sz;E
Number Codes 6201615 e rom
INTRO
**Invented/Artificial s*Natural
d Signaling J DNA — Genetic code
» Smoke signals > Base-4{A,C,G,T)
» Drums

» Semaphores

1 Communications
Morse code

Paper tape codes
Encryption/cypher codes
ASCII code (also EBCDIC)

VVYVVY

d Fibonacci sequence
» Shell growth
» Leaf growth

Hollerith code (punch cards)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Telegraph: Morse Code

Base 2 = {dot, dash}

Each letter is a 1 to 4-bit character

International Morse Code

1. The length of a dot = ane unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
3. The space between words is seven units.

“1VNVOVOZEr-AR—=I0OTMMONO D>
= MMM
oIIIIoIIoI [
[I oll [
.ol °
| |

Chart of the Morse code letters and numerals.!"

Ue o mm
Veeoomm

CLOONOUBEWN -
il
o0
II. []
°
I.

B

15t Digital Code

1836-1844

by Samuel F.B. Morse et al.

A typical "straight key". This U.S. model, &7
known as the J-38, was manufactured in huge
quantities during World War Il, and remains in
widespread use today. In a straight key, the
signal is "on" when the knob is pressed, and
“off" when it is released. Length and timing of
the dots and dashes are entirely controlled by
the telegraphist.

DR JEFF

¥ SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

CSUN B sorrware
Punchcards et

INTRO

A B
12| 12 12
11
00p0o00qo{co00poOOO0OCOD0OCO000000NEG00000000000000000000000600006000000000060800000
1 2P 456 8|82 IISIET NN OUSBU BN NI MISBITIBITN 424248546 4745495051 5253545556 57 5255 6061 620354 656667886970 71 T2I3747578717819 %6
R RER R RS R AR AR R R RN R AR RN R R R R R R R R R R R R R AR R R R R RN R AR R R RRRRRRRRRRRRARRR
2277222227220222

3333333333333333333333332333
Q4444440404440 44 4044000440044 44044444444 0444 440400444 40444440444444044444444444
55555555555555555555555555R855
B6B66666666666666666666666650666665666
IR RN R RN R R RN RN
80688800868060668630800668806806880E0R808080000663880800680000080803080668880803086688888838

IBM punch card

Invented by Herman Hollerith for 1890 census

CSUN

ASCIl Codes- Letters

INTRO

@ DR JEFF
254 soFTwaRE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

Table 1-3 ASCII Conversion Chart for Letters

Hex Character Hex Character
41 A 61 a
42 B 62 b
43 C 63 c
44 D 64 d
45 E 65 e
46 F 66 f
47 G 67 g
48 H 68 h
49 | 69 I
4a J 6a |
4b K 6b k
4c L 6c l
4d M 6d m
| de N 6e n
4f O 6f 0
50 P 70 p

1963

CSUN : B soFrware
ASCI| Codes- 7-bit cris i o

INTRO
USASCII code chort
? - 0 0 0 0 | |) '
. —~] %] °,] Yol Ral Eal Ya 1Y
by b =
Al N1 © u 2 3 4 s | 6 | 7
olololo] O |JinuL|]oLe || SP 0 @ P . p
ojojo| | SOM | DC) ' 1 A 0 0 Q
ololrJol 2 [sx{ocz | ~ 2 B R | b c
olof |1 3 |eETx | OCH 7 3 C S < 3
0j11]101}0) EOY | DCa ' B D T d '
ol |0 5 ENQ | NaX % 5 £ v -, v
oli1lr]o] 6 |acxk | srn [6 f v { v
ol [v|1] 7 [®ec Jeve | ° 7 G w p -
\n=\uOO0A r{oJofo] 8 | Bs | can | ¢ i " X h x
sp=\u0020 1{ojo]1] 9 JuT || Em) " 1 Y i ’
1{of[r]O] 10 | uF Jsua | = : J 2 j 2
char ch=0xA 110 1|1 | I vy ESC + 2 8 C k '
rjrjojo| |12 FF FS . < L \ 1
char sp=0x20 ST I TR - —I - = 3 =
vl jijo} 14 s0 RS . b " ~ - ~
B IE / 7 0 — 0

IANA encourages use of the name "US-ASCII" for Internet uses of ASCII

/| DR JEFF
SOFTWARE

CALIFORNIA INDIE APPDEVELOPER
STATE UNIVERSITY ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

EBCDIC

Extended Binary Coded Decimal

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Old Mac Char Codes

/| DR JEFF
SOFTWARE

INDIE APPDEVELOPER
©2016-19 Jeff Drobman

DR JEFF

CSUN . ¥ SOFTWARE
CALIFORNIA l ' INDIE APPDEVELOPER
STATE UNIVERSITY I I I C O d e ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO UTF-8/16 —

Unicode

From Wikipedia, the free encyclopedia

Not to be confused with Unicode (telegraphy).
For what the term "Unicode" means in Microsoft documentation, see UTF-16.

Unicode is a information technology standard for the consistent encoding, representation, and handling of text
expressed in most of the world's writing systems. The standard is maintained by the Unicode Consortium, and as of
March 2020 the most recent version, Unicode 13.0, contains a repertoire of 143,924!"] characters (consisting of
143,696 graphic characters, 163 format characters and 65 control characters) covering 154 modern and historic
scripts, as well as multiple symbol sets and emoji. The character repertoire of the Unicode Standard is synchronized
with ISO/IEC 10646, and both are code-for-code identical.

Unicode

The Unicode Standard consists of a set of code charts for visual reference, an encoding method and set of standard
character encodings, a set of reference data files, and a number of related items, such as character properties, rules
for normalization, decomposition, collation, rendering, and bidirectional text display order (for the correct display of text
containing both right-to-left scripts, such as Arabic and Hebrew, and left-to-right scripts).[2]

Unicode's success at unifying character sets has led to its widespread and predominant use in the internationalization
and localization of computer software. The standard has been implemented in many recent technologies, including
modern operating systems, XML, Java (and other programming languages), and the .NET Framework.

Unicode can be implemented by different character encodings. The Unicode standard define§ UTF-8, UTF-16,fand U N I ‘ o D E

UTF-32, and several other encodings are in use. The most commonly used encodings are UTF-8, UTF-16, and UCS-2 Logo of the Unicode Consortium
(without full support for Unicode), a precursor of UTF-16; GB18030 is standardized in China and implements Unicode Alias(es) Universal Coded Character Set
fully, while not an official Unicode standard. (UCS)

UTF-8, fhe dominant encoding on the World Wide Web (used in over 94% of websites as of November 2019),[* uses | Language(s) Intemational
one bytel™t Tior the first 128 code points, and up to 4 bytes for other characters.[*] The first 128 Unicode code points | Standard Unicode Standard

represent the ASCII characters, which means that any ASCII text is also a UTF-8 text. Encoding UTF-8, UTF-16, GB18030
formats Less common: UTF-32, BOCU,
UCS-2 uses two bytes (16 bits) for each character but can only encode the first 65,536 code points, the so-called SCSU, UTF-7

Basic Multilingual Plane (BMP). With 1,112,064 possible Unicode code points corresponding to characters (see below) | proceded by ISO 88509, various others
on 17 planes, and with over 143,000 code points defined as of version 13.0, UCS-2 is only able to represent less than
half of all encoded Unicode characters. Therefore, UCS-2 is outdated, though still widely used in software. UTF-16

DR JEFF

CSUN . . 25 soFTwARE
CALIFORNIA l ' INDIE APPDEVELOPER

STATE UNIVERSITY n I CO d e — 1 6- B I t ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO UTF-16 ——

+*7 LSB are same codes as for ASCII ~
&9 MSB add 216=65 536 - 128 new codes T A& sew

Many modern applications can &7

\/
"‘Japanese CharaCter Sets (‘E '?’)u render a substantial subset of the
» Kanji uses same 5000 characters as base Chinese many seripts in Unicode, as

demonstrated by this screenshot

» Hiragana/Katakana uses (05h%% or E{RA?) from the OpenOffice.org application.
«* Other foreign languages 7777 or A&&".
Q alphabets Initial repertoire covers these scripts: Arabic, Armenian, Bengali,
Q special characte ospomofo Cyrillic, Devanagari, Georgian, Greek and Coptic, Gujarati,
Gurmukhi, Hangul, Hebrew, Hiragana, Kannada, Katakana, Lao, Latin,
(vis-a-vis, OomIGUt)MaIayalam, Oriya, Tamil, Telugu, Thai, and Tibetan.®!

Unicode Transformation Format and Universal Coded Character Set [edit)

Unicode defines two mapping methods: the Unicode Transformation Format (UTF) encodings, and the Universal Coded Character Set (UCS) encodings.

The Unicode codespace is divided into seventeen planes, numbered 0 to 16:

VeTeE Unicode planes and used code point ranges [hide]
Basic Supplementary
Plane 0 Plane 1 Plane 2 Planes 3-13 Plane 14 Planes 15-16
0000-FFFF 10000-1FFFF 20000-2FFFF 30000-DFFFF E0000-EFFFF FO000-10FFFF
Basic Multilingual Plane Supplementary Multilingual Plane Supplementary Ideographic Plane unassigned Supplementary Supplementary
Special-purpose Private Use Area
Plane planes

BMP SMP SIP - SSP SPUA-A/B

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Unicode

INTRO

0
U+008x :-)é)-(-);‘:
U+009x ;l-)-é-s-‘:
U+00Ax l-gg l
U+00Bx e
u+00Cx | A
U+00Dx P
U+00Ex a
U+00Fx 0

Notes

C1 Controls and Latin-1 Supplement!’]
Official Unicode Consortium code chart |] (PDF)

1 2 3 4 5 6 7 8 9 A B Cc

.....................

.......

.......

£ | 2| ® oo 7
A A A A A E ¢ E E E | E i
N o0 6 6 o6 O x ©@ Uu u U U
a a a a a ® ¢ © e e é |
A 0 (o) 0 0 0 = o u u a u

1.7~ As of Unicode version 12.0

Upper 128 chars of 8-bit Plane 0 — UTF-16 —

......

.......

.......

DR JEFF

SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

.......

.......

.......

.......

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

CSUN

CALIFORNIA
STATE UNIVERSITY

©2016-19 Jeff Drobman

MS Windows (1252)

NORTHRIDGE

INTRO

129

113

Lo

1 A Qla q L

kK

Q|

B

,

on A

456¢

M#L$ 7 w&¢”-

™

< L o

249

233
~
<

I Z

bat]

U

_0e 122 L 13% %4 L 170 186 200 0 1k 2% 2
E U ¢

4] m
2o »m,
9 o «u
q4H 0 >m.
s (m..

z S

k {

K [

SRS S S | I S -

B +

U
* Y

I
i

188 .

72

SO & SN | Bt

Ya

172 L

I p

208

JASK L 174 L 190

I !
| ,
Eh i kil
B & md o et
m,, 3

- -

S L ® %

DR JEFF

CSUN

' SOFTWARE
CALIFORNIA l ' I INDIE APPDEVELOPER
STATE UNIVERSITY F - 8 ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO
UTF-8

From Wikipedia, the free encyclopedia

UTF-8 is a variable width character encoding capable of encoding all 1,112,064("] valid code points in Unicode using one UTF-8

to four 8-bit bytes.?! The encoding is defined by the Unicode Standard, and was originally designed by Ken Thompson
and Rob Pike.[®l] The name is derived from Unicode (or Universal Coded Character Set) Transformation Format — 8- Language(s) _Intenational
bit 5] Standard Unicode Standard
Classification Unicode Transformation Format,
It was designed for backward compatibility with ASCII. Code points with lower numerical values, which tend to occur extended ASCI, variable-width
more frequently, are encoded using fewer bytes. The first 128 characters of Unicode, which correspond one-to-one with encoding
ASCII, are encoded using a single octet with the same binary value as ASCII, so that valid ASCII text is valid UTF-8- Extends US-ASCII
encoded Unicode as well. Since ASCII bytes do not occur when encoding non-ASCII code points into UTF-8, UTF-8 is Transforms / 1SO 10646 (Unicode)
safe to use within most programming and document languages that interpret certain ASCII characters in a special way, Encodes
such as "/ (slash) in filenames, "\" (backslash) in escape sequences, and "%" in printf. Preceded by UTF-1
Since 2009, UTF-8 has been the dominant encoding (of any kind, not just of Unicode encodings) for the World Wide Web e
(and declared mandatory "for all things" by WHATWG!]) and as of June 2019 accounts for 93.6% of all
web pages (some of which are simply ASCII, as it is a subset of UTF-8) and 95% of the top 1,000 highest Share of web pages with different encodings
ranked'® web pages. The next-most popular multi-byte encodings, Shift JIS and GB 2312, have 0.4% and " Google measurements
0.3% respectively.[*Il'0l€] The Internet Mail Consortium (IMC) recommended that all e-mail programs be "
able to display and create mail using UTF-8,'"] and the W3C recommends UTF-8 as the default encoding " —— ASCll only
in XML and HTML.[12] 2 e Eurpe
¢ 30 — IS
Contents [hide] - —~ — others
1 Description 10 \
1.1 Examples 0

1.2 Codepage layout 2000 2002 2004 2006 2008 2010 2012 2014

. . E
1.3 Overlong encodings Usage of the main encodings on the web from 2001 to 2012

) as recorded by Google,®! with UTF-8 overtaking all others in
1.4 Invalid byte sequences 2008 and over 60% of the web in 2012. Note that the ASClI-only
1.5 Invalid code points figure includes all web pages that only contains ASCII

2 Official name and variants characters, regardless of the declared header.

s W © a8

' N\ DR JEFF
CSUN SOFTWARE
. UTF-8 201615 11 brobe
INTRO Variable Length version of Unicode
Number Bits for First Last
Byte 1 Byte 2 Byte 3 Byte 4
of bytes code point code point code point
1 7 U+0000 U+007F 0xxxxxxxX
2 1 U+0080 U+07FF 110xxxxx 10XXXXXX
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxX | 10XXXXXX
4 21 U+10000 U+10FFFF | 11110xxx 10xxxxxxX 10xxxxxx | 10XXXXXX

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

UTF-8 Variable Codes

3| DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

UTF-8 encoding of the ISO/IEC 10646 code points

First Last
UCS Code Code
Bits Point Point Bytes Byte 1 Byte 2 Byte 3 Byte 4
7 U+0000 | U+007F 1 (hoxaooexxx
11 | U+0080 | U+07FF 2 110xxxxx | T0xxxxxx
16 | U+0800 | U+FFFF |3 1110xxxx | TOxx000xx | TO0xxxxxx
21 | U+10000 | U+10FFFF | 4 11110xxx | T0xx00xxx | T0xx000¢x | T0xxxxxx

1. If the most significant bit of a byte is zero, then it is a single-byte character, and is com-

pletely ASCII-compatible.

2. If the two most significant bits in a byte are set to one, then the byte is the beginning of a

multi-byte character.

3. If the most significant bit is set to one, and the second most significant bit is set to zero,

then the byte is part of a multi-byte character, but is not the first byte in that sequence.

DR JEFF

CSUN

' SOFTWARE
CALIFORNIA INDIEAPPDEVELOPER
STA;‘OER(;::III;:,ZSEITY l l I F - 8 (| OW) ©2016-19 Jeff Drobman
INTRO
UTF-8
_0 21 2 3 _4 5 _6 -~ _8 9 _A _B _c _D _E _F

o NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO sI

- 0000 0001 0002 0003 0004 0005 0006 0007 o008 0009 000A 000B Qooc 000D 000E 000F
, DLE DCl1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

~ o010 0011 0012 0013 0014 0015 0016 0017 0018 0019 001a 001B 001c 001D 001E 001F
2 Sp ! " # $ % & ! () * + r —_ . /

- 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 002a 002B go2c 002D 002E 002F
, 0 1 2 3 4 5 6 7 8 9 : : < = > ?

B 0030 0031 0032 0033 0034 0035 0036 0037 0038 0039 Q03a Q03B 003C 003D 003E 003F
- @ A B C D E F G H I J K L M N 0

- 0040 0041 004z 0043 0044 0045 0046 0047 0048 0049 004n 004B 004cC 004D 004E 004F
. P Q R S T U V W X Y / [\] " .

B 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 005 005B 005C 005D 005E 005F
.) a b c d e f g h i J k 1 m n o

- 0060 0061 0062 0063 0064 0065 0066 0067 o068 0069 006A 006B 00s6C 006D 006E 006F
, P q r s t u vV W X y z { | } ~ DEL

- 0070 0071 0072 0073 0074 0075 0076 0077 o078 0079 007A Q078 Qoic 007D 007E 007F

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

UTF-8 (high)

@) DR JEFF
|§|SOFTWARE

©2016-19 Jeff Drobman

.
8

+00 +01 +02 +03 +04 +05 +06 +07 +08 +09 +0A +0B +0C +0D +0E +0F

.]
9

+10 +11 +12 +13 +14 +15 +16 +17 +18 +19 +1A +1B +1C +1D +1E +1F

.
A

+20 +21 +22 +23 +24 +25 +26 +27 +28 +29 +2A +2B +2C +2D +2E +2F

.
B

+30 +31 +32 +33 +34 +35 +36 +37 +38 +39 +3a +3B +3C +3D +3E +3F
2 Larmn Larixy | Lariw | Larmn Lariy Lariw Larin | IPA IPA IPA accewnrs accenrs Greex Greex
c_ ooso 00C0 0100 0140 0180 0ico 0200 0240 0280 02co 0300 0340 0380 03Co
2 Cyrrir Cyarr Cyrin Cyrrn Cysrr Armen: Hessew Hespew Arasic Arasic Asasic Asasrc Syriac | Arasic Traana N'Ko
D_ o400 0440 0480 04cCco 0500 0540 0580 05co 0600 0640 0680 06C0O 0700 0740 0780 07co
3 Impre Mrisc. Symsor Kawa.. CIJK CJK CJK CJK CJK CJK Asiax Hancur Hancur Hansun PUA Forus
E_ 0800 1000 2000 3000 4000 5000 6000 7000 8000 9000 A000 B0O0O cooo D000 E000 F000
s sMp.. [] [] ssp.. spu.
F_ 10000 40000 80000 C0000 100000

Orange cells with a large dot are continuation bytes. The hexadecimal number shown after a "+" plus sign is the value of the six bits they add.

White cells are the leading bytes for a sequence of multiple bytes, the length shown at the left edge of the row. The text shows the Unicode blocks encoded by
sequences starting with this byte, and the hexadecimal code point shown in the cell is the lowest character value encoded using that leading byte.

cells must never appear in a valid UTF-8 sequence. The first two red cells (CO and C1) could be used only for a two-byte encoding of a 7-bit ASCII character
which should be encoded in one byte; as described below such "overlong" sequences are disallowed. The red cells in the F row (F5 to FD) indicate leading bytes of 4-
byte or longer sequences that cannot be valid because they would encode code points larger than the U+10FFFF limit of Unicode (a limit derived from the maximum
code point encodable in UTF-16), and FE and FF were never defined for any purpose in UTF-8.

Pink cells are the leading bytes for a sequence of multiple bytes, of which some, but not all, possible continuation sequences are valid. EO and FO could start overlong
encodings, in this case the lowest non-overlong-encoded code point is shown. F4 can start code points greater than U+10FFFF which are invalid. ED can start the

encoding of a code point in the range U+D800-U+DFFF; these are invalid since they are reserved for UTF-16 surrogate halves.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Hardware

> Models
> History

Computer
Engineering

DR JEFF
SOFTWARE

©2016-19 Jeff Drobman

CSUN B sorrware
e Computer Memory Org s,

INTRO

1.6.1: Some computer components.

Disk
Terabytes
Code + Data + OS

Gigabytes

L1/L2 Cache SRAM
Megabytes

O

DR JEFF
CSUN) sorrwane
-sumee CPU Org + Memory Hierarchyessams

INTRO

Multi-level Memory —

- TIMING SIZE
(cycles) ¢ (bytes) smaller
+0 4(N+1)
CPU chip — faster
Instructions
“Harvard”
+1 8-64K
L1 cache
— - SRAM x10-100
Unified
RAM +100 1-4G
(1/D)
lower larger
DISK >
+1000 256G

(SSD = “flash”) : v

CSUN

e DR JEFF
v SOFTWARE

INDIE APPDEVELOPER

°
CALIFORNIA (
STATE UNIVERSITY IVI e I I l O ry h I pS ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

DRAM 1T

Dynamic random-access memory (DRAM)
is a type of random access semiconductor

I memory that stores each bit of data in a

. memory cell consisting of a tiny capacitor and
| atransistor, typically a MOSFET. The
capacitor can either be charged or
discharged; these two states are taken

SRAM 4T

Static random-access memory is a type of
semiconductor random-access memory
(RAM) that uses bistable latching circuitry
(flip-flop) to store each bit. SRAM exhibits
data remanence, but it is still volatile in the
conventional sense that data is eventually lost
when the memory is not powered.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Memory Chips

Pe DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

ROM

3

Read-only memory (ROM) is a type of non-
volatile memory used in computers and other
electronic devices. Data stored in ROM
cannot be electronically modified after the
manufacture of the memory device. Read-only
memory is useful for storing software that is |
rarely changed during the life of the sy

**ROM (masked)
***PROM
**EPROM
**EEPROM
**Flash E2

CSUN

CALIFORNI

DR JEFF

| SOFTWARE

INDIE APPDEVELOPER

e Hardware-System Model esesiisan

INTRO
DROBMAN MODEL TRIPARTITE GRAPH MODEL
« PRIMARY FUNCTIONS ARE NODES OF DIGITAL SYSTEMS:
« NODES ALSO CONTAIN THE OTHER
TWO SUBORDINATE FUNCTIONS COMPUTER
« NODES ARE HIERARCHICAL
« INTERCONNECTIONS ARE GENERIC &
BIDIRECTIONAL PROCESSOR primary Design Level:
« NODES MAY BE ROTATED FOR Logic
EMPHASIS (PRIMARY SYSTEM) e
Primary Design Level:
Physical
Primary Design Level: INPUT/OUTPUT
Logic- Memory Cell OR
MEMORY/ COMMUNICATIONS
STORAGE
(INCLUDES PERIPHERALS)
transFIXES,
transFERS/
transPORTS
COMMUNICATIONS
MEMORY/
STORAGE
COMMUNICATIONS SYSTEM STORAGE SYSTEM
@ Q PROCESSOR
gfg&%’fé (E.G., NETWORK PROCESSOR)
Copyright 2007 Jeffrey H. Drobman - all rights reserved PROCESSOR INPUT/OUTPUT

CSUN B sorrware
Hardware-Bus Model i

INTRO

CONTROL BUSES (status & control)

CIN-COUT

-

z INPUT-PRINT
¢ GET-PUT

READ-WRITE

DATA BUS

DMA

NON-MULTIPLEXED BUSES

CSUN B sorrware
MPU/MCU Generation S s

INTRO
Microprocessors L2z Microcontrollers
For PU iso00s, 6800 For
COMPUTING CONTROL

AT
8085, 280, 6502 1975 8-bit MCU 8048, 8051, PIC

i80n86, 68000, zsooo 1978 16-bit MCU 78 ARM,PIC

N S

Pentiums, MIPS @ . :
PowerPC, SPARC ’ 1985 32/64-bit MCU 29K, 960, ARM, PIC

N S

CSUN CISC vs RISC: E)sorrware

AAAAAAAAAAAA f EVELOP;
sssssssssss SITY ©2016-19 Jeff Drobman

E

INTRO Complex/Reduced Instruction Set Architecture

**Microprocessor History

» 1971-85: CISC (8/16-bit)
< Intel 14004 (4-bit)
< Intel i8008 (8-bit) = i8080 - i8085, Z80 = i8086 (16-bit) > “x86”
<> Motorola 6800 (8-bit) 2 6502 = 68000 (16-bit)
<> IBM PC used i8088 (8/16-bit) in 1981 = i80n86 (“x86”) = Pentiums

» 1985-2000: RISC — (32/64-bit)
<> SPARC* (UC Berkeley—=> Sun/Oracle)
<> MIPS* (Stanford)
<> PowerPC* (Motorola/IBM)
<> AMD 29K
<> Intel i960
< Intel/AMD “Pentiums”*
< ARM*

*still exist

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

" wsggTJ\{%gEE
CISC Instruction Cycle ==
INTRO

©2016-19 Jeff Drobman

2]
so \ I
S, L/ /
Sz / \ Y 4
T T T2 WAIT T3 STOPPED T4 TS
HIGHER
LOWER 6-BITS EXTERNAL | INSTRUCTION HALT
CPU 8-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF
INTERRUPTED | ADDRESS TWO BITS NOT READY FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL (OPTIONAL) | DATA OUT CPU
ouT (8-BITS)
= TYPICAL PROCESSOR CYCLE -
INCLUDES T1, T2, T3, T4, TS

MCS-8 BASIC INSTRUCTION CYCLE

CSUN : B4 soFrware
e CISC State Dia gram 0201615 s o

INTRO MCS-8 ——

READY

MCS-8 BASIC SYSTEM

CPU STATE TRANSITION DIAGRAM

p= JEFF
CSUN RISC: @B sorrware
CALIFORNIA [] INDIEAPPDEVELOPER

STATE UNIVERSITY ©2016-19 Jeff Drobman

NORTHRIDGE

INTRO Reduced Instruction Set Architecture

¢ Key Architecture of RISC
» Reduced ISA: small set of instructions
» Fast execution: single cycle only

» Reduced impact of memory
<> No microprogram (key change)

= |nstructions scale to vertical microinstructions (single-cycle)
= eliminates ~30% chip area

<> LOAD-STORE (only) memory references
<> Full general register sets
<> Cache memory
= On-chip
= Multi-level
= Harvard architecture — separate | and D
» Pipelining
<~ 4 or 5 stages
<> Interlocks

= Hardware (SPARC, 29K)
= Software (MIPS): compiler manages pipeline scheduling

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

DR JEFF

252 soFTwARE
RISC Pipe lines

Instructions

<

| fetch

I-dec/Op-fetch

ALU execution Hardware Interlock
or
Write-back Delay Slot (NOP)

(for LOAD, BR)

Data

<

CSUN : : B sorrware
CISC/RISC Pipelines

INTRO
Instructions RISC Pipeline -
@ R3000/SPARC/i960/29K/PPC
4- | I
. . 8 cycles per | fetch One cycle 1 cycle per |
Non pipelined 18008/m6800
I+D fetch|| Execute | I+D fetch || Execute I-dec/Op-fetch
One cycle ' ALU execution
Hardware Interlock
. or
2-4 cycles per | i8088/M68000 Write-back 1 pelay Slot (NOP)
. . (for LOAD, BR)
CISC Pipeline [25tage’ Data
|

| v

1+D Fetch Exequte
]]

I
I14+D fetch Exedute
I

I14+D fetch Exegute
]]

v

One cycle

CSUN

DR JEFF

CALIFORNIA INDIE APPDEVELOPER
STATE UNIVERSITY I I l e e O I I rO ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

Microprocessors
For
COMPUTING

*

D)

*

All 32/64-bit CPUs
* Large data processing

applications

€ Employee records
€ Accounting
€ Payroll

* Operating systems (OS)

» “Apps” (applications)
€ PC/Mac
€ Mobile (phones, tablets)
€ Web apps
€ Cloud apps (SaaS)

CAR)

D)

L)

*

D)

CAR)

D)

L)

Focus is Memory
for large Data Files

Large DRAM, Disk, Flash

25 soFTwaARE
Microcontrollers ,
For <> Real-time
<> All-in-one
CONTROL

s Small embedded control applications (8-bit MCU)
4 Appliances & Tiny
@ Disk controllers
€ Remote controllers
€ Garage/gate openers
s Medium embedded control (16-bit MCU)
@ User devices (iPods, phones, etc.)
€ Car/Airplane engine control
@ Car/Airplane braking & safety
€ Car transmission control
€ Home Automation (HAN)
** Large embedded control (32/64-bit MCU)
€ Car/Airplane entertainment
€ Car/Airplane navigation, systems management
& Printers (MF)
€ Communications gear (WiFi, cable TV boxes)

<> Low power
<> Low cost

Focus is I/0 — Interrupts

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

)\ DR JEFF
SOFTWARE

I ' ' INDIE APP DEVELOPER
e O ry O e S ©2016-19 Jeff Drobman

MICROPROCESSOR

GP REGISTERS

l D

CACHE CACHE

DRAM

LARGE
EXTERNAL
MEMORY

MICROCONTROLLER

DATA
CODE RAM
ROM* FILE REG
DATA
ROM*
SMALL *ROM contents
must be
INTERNAL ‘orogrammed”
MEMORY “burned”, or masked

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Computer Architecture

are DR JEFF
B soFTwaARE

©2016-19 Jeff Drobman

CPU Periormance

DR JEFF
| SOFTWARE

CALIFORNIA i INDIE APPDEVELOPER
STATE UNIVERSITY e r O rl I I a n C e ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

, : Instructi Clock cycl Seconds
Time = Seconds/Program = \ﬁ

ck cycle

Progl am Instruction

CPU time = Instruction count x CPI x Clock cycle time

Clock rate = 1/Clock cycle time

Instruction count x CPI

CPU ti =
U time Clock rate

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

@'%| DR JEFF
IQISOFTWARE

CPU Performance o201 3 4 e

The following table summarizes how these components affect the factors in the CPU performance equation.

Hardware or
software
component

Algorithm

Programming
language

Compiler

Instruction
set
architecture

Affects what?

Instruction
count, possibly
CPI

Instruction
count, CPI

Instruction
count, CPI

Instruction
count, clock
rate, CPI

How?

The algorithm determines the number of source program instructions executed and hence
the number of processor instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the algorithm uses more divides, it
will tend to have a higher CPI.

The programming language certainly affects the instruction count, since statements in the
language are translated to processor instructions, which determine instruction count. The
language may also affect the CPI because of its features; for example, a language with
heavy support for data abstraction (e.g., Java) will require indirect calls, which will use
higher CPI instructions.

The efficiency of the compiler affects both the instruction count and average cycles per
instruction, since the compiler determines the translation of the source language
instructions into computer instructions. The compiler's role can be very complex and affect
the CPI in varied ways.

The instruction set architecture affects all three aspects of CPU performance, since it
affects the instructions needed for a function, the cost in cycles of each instruction, and
the overall clock rate of the processor.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Computer Architecture

P8 DR JEFF
B2 soFTwARE

©2016-19 Jeff Drobman

Q

Parallelismn

AAAAAAAAAAAA
STATE UNIVERSITY

I-D Parallelism: SIMD

= DR JEFF
(&2 soFTWARE

l} EVELOP;
©2016-19 Jeff Drobman

Multiple (M)

Single (S)

Flynn Partition

Michael J. Flynn paper (U lllinois (UIUC), Ca 1969)

Instructions

Superscalar N\ Supercomputer
GPU

—SD } MD ——
51 SIMD

‘ Vector Processor

Std CPU

Data

CSUN sgIETJv::/i;E
e [NSstruction Level Parallelismesesiien.

INTRO

¢ Super- Pipelining
 SISD (single instruction)
[Split some pipeline stages
d Faster clock cycle = higher throughput (mips)
d Affect CPI?

¢ Super- Scalar
d MISD (multi-instruction)
d Multiple pipelines = each with own ALU
[Requires compiler to schedule instruction streams

¢ Multi- Threading
d SISD (single instruction)
O Multiple control threads
 Requires programmers to schedule control threads
“* Multi- Core
[Classic Parallelism: multiple copies of the whole CPU
J Multiple L1 caches (one per core)

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Computer Architecture

' " B DR JEFF
| lSOFTWARE

©2016-19 Jeff Drobman

Orther Harcdware
(Peripherals)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Hardware-ARM SoC

DR JEFF

SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

, N JTAG ARM Voltage | |
Scan Processor Regulator -
System Controller
Advanced Int. Ctrl. Em —> = —>
Power Mgt. Ctrl. m:]:: =°l
PLL <ﬂ<): E
- Osc o SRAM
RC Osc O
Reset Ctrl. Peripheral E’
Brownout Detect Bridge E
Power On Reset § < Flash
Prog. Int. Timer —> Xﬁ‘
Watchdog Timer :: $
€% | Real Time Timer B Peripheral Flash | L
D:;‘c:n g ~ 7 |Data Controller| |Programmer |~ e
< | .| Application-Specific | _ >
“«»| |[¢»| Ethernet MAC |« »>|< P CAN - >
+—> USARTO-1 < >« > USB Device <+ >
o) o)
> = <> SPI < »>|< b PWM Ctrl = >
A .
<“+»| |[¢» Two Wi Interface |« >| < | Synchro Serial Ctrl 4| |4+
+—> ADCO0-7 > |« »| TimepCounter0-2 |4»| |€+P

\/

CSUN

W DR JEFF
SOFTWARE

CALIFORNIA . INDIE APPDEVELOPER
STATE UNIVERSITY a a O l lve rS I O I l ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

Embedded Control lives in an ANALOG world

ANALOG IN)

PROCESSOR

ADC

1011010010

DIGITAL

C =) ANALOG OUT

10110100

|

s ADC
< Typ 8-14 bits (resolution)
<> Flash or SAR

» DAC
<> Byte (8-bit)
<> Resistor ladder

CSUN B8 sorrware
. Software 201615 e robmn
INTRO Computer
Science

Soltwalre

Modlels:
Levels & Layers

CSUN B)sor e
Realms of Software ca v

~70% of all software

s Applications *Web **Embedded Control
d Desktop d Markup d Small (8-bit)
d Mobile (Apps) d Applications d Medium (16-bit)
d Web d SQL databases d Large (32/64-bit)

s From TV remotes to
+* Autonomous cars and
** Robots

s APIs (Frameworks) +* Client-Server model
** Language “stacks” (e.g., LAMP)

» Common required properties
= Performance
= Reliability (bug free)
= Security

CSUN g sg_IETJ\Sz;E
Software Levels s v

INTRO

Imports System.Drawing.Printing
Public Class Form1
Inherits System.Windows.Forms.Form

"**gsystem constants
Public Version As String = "Version x.x” Human readable
Dim DataVer As String 'ver # in file (.htm, .js, .php, .vb files)
MyBase.Load
copyrt.Text = "Copyright(c) 2007-12"
Demolab.Visible = DEMO
boxcolorY = CatBox.BackColor

LD R1,X hybrid
ADD R1,R2,R3 (.asm files)

High-Level

Assembly

M_aCh'ne 1011010010101101| Machine readable
(Blnary) (.exe files)

DR JEFF

CSUN)| sorrware
Software Layers e s

INTRO

Simple View

User
Applications 7 Java, Python, C/C++

Microsoft .NET, Java Lib
Apple Cocoa, Android API

API

Win/Mac OS/Unix

Assembly level iOS, Android

' Hardware

CPU

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

)\ DR JEFF
SOFTWARE

INDIE APPDEVELOPER

Com Protocol Layers s

INTRO
7-Level LEVEL EXAMPLES
OSI MODEL
. . Office applications suite, Adobe Acrobat
of Protocol Layers 7 Application Internet applications: HTTP, FTP, POP, SMTP

IN COMMUNICATIONS SYSTEMS

6 Presentation
5 Session
4 Transport

3 Network

2 Data Link

DIGITAL PMI
1 PHYSICAL

ANALOG PMD

SSL, encryption, compression

connections

TCP, UDP, TLS

IP addressing &
routing

MAC (Media Access Control)

PHY-
CDR

Transceiver

Optical-

Laser diode/LED, Photodetector, TIA, PA

Copyright 2015 Jeffrey H. Drobman — all rights reserved

CSUN)sorrware
AR UNTVRRRITY H a rd Wa re-SOftwa e La ye 'S ©201615 st brobmn

NORTHRIDGE

INTRO
7-Level
EXAMPLE.
STACK HIERARCHICAL MODEL OF LEVEL S
e o et 7 Data .doc, .xls, .sql, .csv, .txt files

OF DIGITAL SYSTEMS

6 Applications Microsoft WORD, Excel & “apps”

Microsoft .NET, Java Lib

Middleware 5 API
SOFTWARE Apple Cocoa, Android API
. Win/Mac OS/Unix
Firmware
4 0S iOS, Android
PROCESSOR 3 Processor Intel/AMD Pentiums
ARCHITECTURE |S A MIPS, Sparc
HARDWARE

DIGITAL 2 Logic Design

ANALOG 1 Communications

(NOTE: FIRMWARE is any embedded software, such as microprograms, monitors, real-time executives, etc.)

Copyright 2008 Jeffrey H. Drobman — all rights reserved

CSUN : B sorrware
Problem Solving e
INTRO Computer
Science

Top-Dowmn
Analysis
& Deslgn

CSUN : B3 sorrware
Problem Solving can v

INTRO

Problem = Requirements =2 Design = Implementation

\ /
I

SDLC

¢ Requirements
1. Functionl

2. Function 2
3. Function 3
4. Function 4
5. Function 5
6. Featurel
/. Feature 2

CSUN : SOFTWARE
g Top-Down Analysis caoe

INTRO

“Problem” = “Requirements”

Problem

Sub Sub Sub

Problem Problem Problem

Sub-sub Sub-sub
Problem Problem

Each Sub Problem = Requirements/Function

CSUN E3)sorrunne
e JOP-Down System Design emes i

“System” = Hardware + Software

** Each block has

[Structure

1 Behavior
> Data flow
» Control flow

DATA
STRUCTURE

Structure Mapped to Requirements

CSUN B sorrware
R Software Structure

INTRO Tree structure —

Structure Mapped to Requirements

Method

Algorithm 1 Algorithm 2

» Not all Functions are implemented by Algorithms

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Software Structure

Programs

Computer
Science

Pe DR JEFF
23 soFTwaARE

©2016-19 Jeff Drobman

CSUN . (3 B
e Programs & Algorithms esmesiican

INTRO Nested Structure —

Requirements Procedure = Process

» Map Fns 2> Methods

Data IN Method 1 » Data OUT

Algorithm A

Method N

Algorithm B

» 1 Algorithm per function or method

CSUN . (3 B
Program Debugging e

INTRO

Errors and Bugs

\/

s+ compiler finds
s you fix

o

ERRORS

Requirements

+* You find

Data IN » Data OUT
** ERRORS * BUGS
O syntax =2 compiler Q DEBUG
0 semantic/logic 2 debug Q insitu 2 IF-THEN

O exceptions = handlers O exception handlers

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

3| DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Technology
First Computer Bug

- hdae Al > ‘ . 'Iw .,. ~
. '~P’- : e
oy s tﬂ'm‘,-m atig
ton " - .
:...;. #.Ij,r.J A'-J lenh
- ‘A,.',l o At
o Shate) L ﬁ. 1,., [Sinn whai

el N r ¥
....:ﬂ u!

-

3
ﬁ

P, -:;.:J«:.:U e 2y u..1 b..-] t-A--
And one night she (Mark Il)
conked out and we went to look
for the bug and found an actual
large moth, about four inches in
wing span, in one of the relays
beaten to death, and we took it
out and put it in the log book and
pasted Scotch tape over it.
EDN (1947)

(Click image to view full size)

s 1947

"It was over in another building, and the windows had no screens on them and we were working on it at
night, of course, and all the bugs in the world came in. And one night she (Mark II) conked out and we went
to look for the bug and found an actual large moth, about four inches in wing span, in one of the relays

beaten to death, and we took it out and put it in the log book and pasted Scotch tape over it."

Source: EDN (2016-09-09)

1st actual computer bug found, September 9, 1947

CSUN . . B8 e
Software Engineering cosiicon
INTRO Computer
Science

Mlodels

We will use these

AAAAAAAAAA
STATE UNIVERSITY
NORTHRIDGE

IPO Model

85 sorrware

©2016-19 Jeff Drobman

INPUT

DATA

PROCESS

CODE

OUTPUT

DATA

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

**Code structure

] Macro
= (Classes
= Methods

. Control (Micro)
= Conditional blocks

e |If

e Switch - Case
= Loops

* For

 While

Software

DR JEFF

0| SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

*»» Data structure

[In Code
= Arrays K
= Array-Lists
"= Enums
= Collections
[In Files

= CSVfiles
= Databases

+*Data types

d Numeric
= |nteger
" Floating-point
(d Non-Numeric
= Logic (Boolean)
= Characters
= Strings

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Sandwich Model

@'%| DR JEFF
IQISOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

2

d

PROCESS = OUTPUT /O’OCheese (blocks/constructs)

**Bread (encapsulation)

O Classes
» STRUCTURE
d Methods
**Greens (passing data)
Q 1/0

, » Input/Output
Parameter passing

d Conditional structures

= IF-THEN-ELSE

= SWITCH-CASE » CONTROL
d Loops
**MEAT (statements—>gist)
O Arrays
O Strings > DATA
O Expressions

= Arithmetic
= Logical

CSUN . . B8 e
Software Engineering cosiicon
INTRO Computer
Science

SDILC

CSUN

CALIFORNIA
STATE UNIVERSITY
T DGE

INTRO

Software Development

3 DR JEFF
| SOFTWARE

INDIE APPDEVELOPE
©2016-19 Jeff Drobman

Development Procedure
(similar to SDLC)

ANALYZE PROBLEM

—

— Systems Analysis

WRITE REQUIREMENTS

CREATE DESIGN

J STRUCTURE
:> = CODE

= DATA

4

O ALGORITHMS

Language Independent

WRITE PROGRAM

«— Select Language

ANALYZE RESULTS

.)\ DR JEFF
CSUN I 'SOFTWARE
CALIFORNIA (INDIE APPDEVELOPER
STATE UNIVERSITY S D L ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO
SOFTWARE DEVELOPMENT LIFE CYCLE
Traditional SDLC
Systems analysis <:| Requirements
Design <:| Structure CSD UML
4 stages .
we use
Implementation <:| Coding
Testing
Acceptance and deployment
Maintenance

AAAAAAAAAAA
STATE UNIVERSITY
NORTHRIDGE

SDLC + IPO

REQUIREMENTS

H as intended?

INPUT

PROCESS

DR JEFF

&2 soFTWARE

/

E OP
©2016-19 Jeff Drobman

» We will use this model

=)

OUTPUT

H correct program?

DEBUGGING/TESTING

CSUN . [R
S SDLC — Requirements ewssiimm

INTRO

SDLC — System Analysis

Problem (Work statement) = Requirements

Problem

Sub Sub Sub

Problem Problem Problem

Sub-sub Sub-sub
Problem Problem

AAAAAAAAAAAA
STATE UNIVERSITY

SDLC — Requirements

W DR JEFF
|82 SOFTWARE

INDIE APPDEVELOPE
©2016-19 Jeff Drobman

SDLC — System Analysis

**Types of Requirements
Functions (“what”)
Features (“how”)
Performance (speed)
Cost

Time/schedule

DO0D00

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

SDLC — Design

Method 1

Algorithm

m void main() { Main
//call subs
) Program

SDLC — Code Design

)\ DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

#include <stdio.h>

#include <iostream>-

#include <stdnamespace>
» Include/Import LIBRARIES

import javax.swing.jOptionPane

import javax.* -

Sub

Program

Sub

Program

public int sub1(arg_list) {

int fnl Sub-sub
Program

fnl = formulal
return(fnl)

}

Sub

Program

CSUN : B soFrware
SDLC — Data Design cute
INTRO

SDLC — Design

STRUCTURE

DATA FILE A

DATA FILE B oR
o DATABASE

DATA FILE C

DATA FILE D

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

SDLC — Testing

= DR JEFF
22| soFTwaRE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

SDLC — Testing

*»*Reliability
d Testing stmtd
> Unit testing . guﬁ;g
> Black-box e

O Error handling
» Compile time
<> Warnings
<~ Errors
» Runtime
<> TRY-CATCH blocks (Avoid crashes)
d Debugging
» Debug Tools (breakpoints, watch variables)
» Embedded debug code

Compile & run

s*Security

d Top 10 vulnerabilities
d Monitor & Detect
d Plug security holes

Technology
First Computer Bug

U TP g
‘

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Software Engineering

2sa DR JEFF
B soFTwaARE
©2016-19 Jeff Drobman

Computer
Science

[}
CALIFORNIA
STATE UNIVER SITY
NORTHRIDGE

DR JEFF

&) soFTwARE

©2016- 19 Jeff Drobman

. Debugging
» Debug Tools

* Breakpoints
e \Watch variables
e Activation stack

> Embedded debug code

Breakpoints (implicit)
* Print/log variables
* Print/log activities
* Use “SDEBUG” switch

CSUN : B soFrware
Code-Fix Process caoe
INTRO

Reqts
ﬁ SDLC — Testing

Tsui & Bernal (2014), Essentials of Software Engineering

Problem
statement

_____ » Code | —31 Compile +———| Unittest Release)

J

Problem Problem

Debug L y

Traditional SDLC
Figure 4.1: A simple process. Systems analysis

Implementation

Testing

Acceptance and deployment

Maintenance

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Incremental Process

. |Requirement

INTRO
Requirement | |Requirement |,
1 2
Design
Code

Figure 4.3: A multiple-components incremental model.

SDLC — Testing

Tsui & Bernal (2014), Essentials of Software Engineering

System
test

Requirements

Design

Code

Test

Package

Release 1)

Requirements

Design

Code

Test

Package |Release n >

Figure 4.4: A multiple-release incremental model.

DR JEFF

| SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

i) DR JEFF
CSUN - : - &) sorrware
e EStimating Testing Effort e,

INTRO

SDLC — Testing
*»*Device testing takes 2 to 4 times development
effort

v Task Effory Quarter 1 o)
v 1) Soria 21 dw 20 v
o L1} Regaitermmaty 14
o 121 Interaction Desgn 3 UX Designer
o L3I Vsl Desgn kT Designer
e 14} Dewelopment in Developer
* 15} QA 2w GR— A
v 2) Sociae 12 w 24 -
o 2.0 Reguirements 1)
® 221 Imeraction Design % UX Desigoer
o 2.0} Vsl Desgn ¥ O
o 24) Developmers In Develepe!
e 2% QA = QA
v 3) Sprist a3 4w 2e v
e 31} Reguiremeats)
o 12} Irtaeaction Oesgn M. WX Oesign
o 330 Viuul Design 3 o D=
o 34} Oevelopmese in L
. 33) GA in o

4 = O tndTohwid ,

CSUN g sglETJv%iEE
TATEL“r.\Jl\RENR xn Te St P I a n ©2016- 19Jeff Drobman

INTRO

SDLC — Testing
** Functional tests
» Based on feature list
+** Context tests (especially mobile)
» How does the user experience render on the device?
» Does it load quickly and correctly?
» Can you use the physical features of the device as intended?
» Does it terminate correctly?
» What happens when the device loses connection?

» Does the application work when hopping from cell tower to cell
tower?

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

INTRO

SDLC — Revs/Updates

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

o000 \crizon T 10:39 AM

Available Updates

Featured

SDLC — Maintenance

% 100%

Updates

Facebook
Version 47.0, 103 MB UPDATE
What's New v

My Verizon Mobile
Version 4.8.10, 35.5 MB UPDATE
What's New v

Scan - QR Code and...
Version 2.6, 10.0 MB UPDATE
What's New v

(=
g}
Q.
Q
—+
@
>

USPS Mobile®
Version 5.3, 18.2 MB UPDATE
What's New v

Top Charts Explore Search Updates

eeeeC \erizon 10:35 AM +$ 100% o

Updates Update All

Available Updates

. Bank of America - M...

o~
//// Version 6.5.2, 50.7 MB UPDATE

Feb 4, 2016

Thanks for your feedback. The new
features in this app will allow you to:

«Activate eligible debit and credit cards
eLock and unlock debit cards

«View auto loan details (including balance,
payment and due date) and easily schedule
your payment

Please continue to let us know how we can
make your BofA mobile experience better.

Facebook
Version 48.0, 105 MB UPDATE
What's New v

Featured Top Charts Explore Search Updates

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Software Engineering

g DR JEFF
|| SOFTWARE

A OP,
©2016-19 Jeff Drobman

Project Managerment

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Requirements

Waterfall Model

Tsui & Bernal (2014), Essentials of Software Engineering

Design

Code

Figure 4.2: A waterfall model.

SDLC

Test

Integrate and
package

©2016-19 Jeff Drobman

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Project Mgt

DR JEFF

252 soFTwARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

s Agile

*Scrum

** Waterfall model

Tasks

MANAGE

& Resources

& Time

@ Cost

€ Requirements
@ Technologies

Time =2

s Tools
 MS Project
O GANTT
O PERT

CSUN .)-8 s
Agile (PM/SE) 020t 19 v

INTRO

August 2018

Seventeen years ag began as a simple manifesto. Now, with all
the methods and frameworks formulated in its name, it has become fat

and flabby. We have reached a point where what we set out to change
(big prescriptive methods) has returned, but now under the banner of
being agile. The|Heart of Agilelis an attempt to return to agile's real core.
But are the four words collaborate, deliver, reflect, and improve enough
to get practitioners to implement the true heart of agile?

| Essencel a new common ground for|software engineeringJ is an attempt
to find a middle ground between the very core of agile and all the
multitude of competing implementations of agile. In this presentation you

will learn how Essence can strengthen the Heart of Agile without getting
into particular ways of doing agile.

DR JEFF

CSUN B soFrware
CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSITY E S S e n C e ©2016-19 Jeff Drobman
NORTHRIDGE

o
0 IVAR JACOBSON BLOG | INSIGHTS & PUBLICATIONS » | CUSTOMERS | ABOU

INTERNATIONAL
a-Shk

HOME CONSULTING SERVICES» TRAINING» SCALED AGILE FRAMEWORK» ESSENCE» TO

ESSENCE | AN AGILE STANDARD

ON COMMON GROUND

Essence - a standard that defines the smallest set of concepts that are common to all

software projects — helps embed agile professional practices and governance across an ¢ Measure health and progress visually in a
organization for sustainable, scalable and responsive solution delivery. method-agnostic way that everyone

can understand.
The Essence standard helps teams navigate through many of the complex challenges e Easily determine where you and your team(s) are
common in software development delivery -from helping teams identify and engage with the now and what’s next.
right stakeholders at the right time in the right way, to making health and progress visible to ¢ Small-scale endeavors can be smoothly scaled
all in a language that everyone can understand. It helps team move from software as a craft to larger-scale endeavors
to engineering and puts them on a path of continuous learning. e Large-scale approaches can be adapted in

controlled and low-risk ways

CSUN : B34 soFrware
TATEL“r.\Jl\RENR xn S e Ct I O n ©2016-19 Jeff Drobman

INTRO

Java
Vs. Other HLLs

Swiftr-:C/CH+

Julia

Perl

VBA

Visual Basic
Kotlin

R

CSUN B8 soFrware
HL Languages 6201615 e e

INTRO

TIMELINE
1980

1958 1964
m m R 1983 w
1994

1957 1964 1970 /1987

i o

Javascript

S DR JEFF

CSUN [] Dr Jeff SOFTWARE
CALIFORNIA INDIE APPDEVELOPER

sra;:nl::llnvlil;inv C H I Sto ry ©2016-19 Jeff Drobman

INTRO

“The Book”

}

f ROGRAMMING

9
) 'R e
110 l” 11

WELEY ~ 0

» Kernighan & Ritchie

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C Design

@re DR JEFF
ﬂ SOFTWARE

©2016-19 Jeff Drobman

mm%mh sy s
of expression, modern control flow an ructures, and a rich set of

operators. C is not a “‘very high level’ language, nor a “‘big”’ one, and is
not specialized to any particular area of application. But its absence of res-
trictions and its generality make it more convenient and effective for many
tasks than supposedly more powerful languages. -

C was originally designed for and implemented on the bNIXT opmund
system on the DEC PDP-11, by Dennis Ritchie. The
C compiler, and essentially all UNIX applications programs (including all of
the software used to prepare this book) are written in C. Production com-
pilers also exist for several other machines, including the IBM System/370,
the Honeywell 6000, and the Interdata 8/32. C is not tied to any particular
hardware or system, however, and it is easy to write programs that will run
without change on any machine that supports C.

C is a general.ournoca ramming language. It has been closely asso-
ciated with t [UNIX system since it was developed on that system, and
sjnce UNIX e are The language, however, is not
tied to any one opeg ung system or machme and although it has been called
a ‘‘system ' " because it is useful for writing operating
systems, it . sed equally well to write major numerical, text-
processing, and base programs.

pejorative; 1 deals with the same sort of objects that
mostmputendo.mmelychnnuas.numbus.mdaddm These may
be combined and moved about with the usual arithmetic and logical opera-
tors implemented by actual machines.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C Contents

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

Chapter 1 A Tutorial Introduction Chapter 3 Control Flow
1.1 Getting Started , ;; Statements and Blocks
1.2 Variables and Arithmetic < gls?sler
1:3 The For Statement 34 Switeh
1.4 Symbolic Constants ;2 Loops — While and For
1.5 A Collection of Useful Programs 37 ;;f;is = Ho-whila
}g ?"a{? s ;g Continue
i unctio: g Gl i
1.8 Arguments — Call by Value Db b Ll e Habels
1.9 Character Arrays unctions and Program Structure
1.10 Scope; External Variables :-; g:sl:ccf 3
> 10ons Returning Non-|
1.11 Summary :_i More on Function Arg ::‘ e:‘lscxcrs
Chapter 2 Types, Operators and Expressions 45 g:;;:“;'u‘l:mblw
2.1 Variable Names :g i‘:;';;e”.‘"&".‘:::,.
; d g
22 Data Types and Sizes 48 Bk St
%i gon? AN :?0 Initialization
! eclarations . Recursion
2.5 Arithmetic Operators 4.11 The C Preprocessor > Pointers!
gg %elatxggzlvz:g:nzmcal Operators Chapter § Pointers ind Arrays :
2:8 Tncrement and Decrement Operators ;; Pp°!'“°'3 and :ddﬂ%m
2.9 Bitwise Logical Operators 53 Pg;:::r": 3: unction Arguments
2.10 Assignment Operators and Expressions P Amh‘ m""’lk’
211 Conditional Expressions 55 Character Pointers and Functions
2.12 Precedence and Order of Evaluation 5.6 Pointers are not Integers
Chapter 7 _ §loput and Output 53 PO AP Polarss o Pooi
5 Access to the Standard Library 5.9 Initialization of poi,!.e, Arrays
; ; Standard Input and Ontont — Getchar and Putchar 510 Pointers vs. Multi-dimensional Arrays
7:3 Formatted Output — Printf 5.11 Cqmmd.ﬁne A{;urnems
7.4 Formatted Input — Scanf 5.12 Pointers to Functions
1j55) In-memory Format Conversion Siractill
7.6 File Access > e Chapter 6 i
1459 Error Handling — Stderr and EX1 6.1 s .
7.8 Line Input and Output 6.2 Structures and Functions
Some Miscellaneous Functions 63 Arrays of Structures

7.9

TTTTTTTTTTTTTTT
NORTHRIDGE

INTRO

Web Languages

&% DR JEFF
ﬁ; SOFTWARE
©2016-19 Jeff Drobman

TIMELINE

@

LEGEND

MARKUP

SCRIPTING

APPLICATION

=
=
ey

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

HLL Popularity

Table 1.7.1: Top languages ranked by

popularity.
Language

Java
C
Python
Ct+t
Visual Basic .NET
C#
JavaScript
PHP
SQL

Objective-C

Usage by percentage
16%

14%

8%

8%

7%

4%

3%

2%

2%

1%

(Source: https://www.tiobe.com/tiobe-index/

@ DR JEFF
254 soFTwaRE

©2016-19 Jeff Drobman

Dec 2018 —

CSUN B sorrware
Key Languages & Tools e

INTRO

1"l
Languages. Java, C, C++,PHP, C#, R 4
Web: JavaScript, CSS3, HTMLS5, JQuery, Java EE, XML, Ajax, Github, JSP, Bootstrap
Databases: MySQL, Oracle DB
SDLC Agile, Scrum, Waterfall
Frameworks: Spring, Hibernate
Design Patterns: Factory, Singleton, lterator, Builder, Observer, Command
Web/App Servers: Apache Tomcat, Xampp
Web Services: SOAP, REST
m=) Tools: Eclipse, Microsoft Visual Studio, Weka, SPSS, R Studio jGRASP
Platforms: Mac OS X, Windows, Linux (Ubuntu, Mint)

CSUN 24 sorrware
Java Updates 201015 1 s

CALIFORNIA

NORTHRIDGE

INTRO

Security Concerns

Java SE 8 Update 101 [Citadel recommends removing or disabling Java from your
browser. Java is a major source of cyber criminal exploits. It is not needed for most
internet browsing. If you have a particular web site that requires Java, Citadel
recommends using a two-browser approach to minimize risk. If you normally browse
the Web with Firefox, for example, disable the Java plugin in Firefox and use an
alternative browser — such as Chrome, |E9, Safari, etc — with Java enabled to
browse only the sites that require it.]

Java VM (not RTE) on Client

latest rev SE 8 Update 181 (“SE 8u181”)

CSUN i~y ‘|SgII:T~{1$Z;E
e High-Level Language Types s
INTRO

** Imperative/Procedural {main + subs}
< C
<> FORTRAN, PL/1, Pascal (old ones)
** Object-Oriented (OOD/OOP) {classes + methods}
<> C++, Java
<> Visual Studio (.NET)-- VB, C#
<> Apple’s Objective C/Swift
¢ Scripting (Functional) {command sequence}
<> Perl, Ruby, PHP, Javascript
** Markup {sequence independent page building}
<> HTML5, XML, XAML, CSS
s Database Query
<> SQL, MySQL, jQuery

CSUN : B4 soFrware
Web Server Side

8.1.3 Comparing Server-Side Technologies

s ASP ¢ Python
O Microsoft .NET O Terse OOP
O JIT (intermediate language) O Used in Django, Pyramid
Q MVC ** Ruby (on Rails)
**JSP Q Templates
O Java d mvC
O JIT (intermediate language) ¢ Python
**Node.js Q Terse OOP

L Javascript (on server)

d Complete (app server too)
** Perl

O Scripting + C-like

O Uses CGlI
**PHP

O Scripting + OOP

O JIT (intermediate language)

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Software

©201

Exampple:
Hello Worlel

DR JEFF
SOFTWARE
INDIE APPDEVELOPER

fffffffffffffff

CSUN ° (| wsgll:T‘{[%Z;E
- Comparison: “Hello World™ s

INTRO

#include <stdio.h>
void main () {
printf(“Hello world!\n”;

}

C++ |#include <iostream>
void main () {
std: :cout << “Hello world!\n”;

}

Java Public class helloWorld {
public static void main (String[] args) {
system.out.println (“Hello world!”);

}

Javascript | //myfile.js
Console.log(“Hello world!"”);

CSUN ° (o wsggTﬁZ;E
- Comparison: “Hello World™ s

INTRO

Basic 10 PRINT "Hello, world!” note: line numbers!
20 END

Public Sub Main()

VB MsgBox "Hello, world!" OOP + GUI
End Sub
using System;
C# i.nternal static class HelloWorld OOP + console
private static void Main()
{
Console.WriteLine("Hello, world!");
}
}

DOS @echo Hello World! script (for console)

CSUN ° Ve wsgll:T‘:EZ:;E
- Comparison: “Hello World™ s

INTRO

<?php > all console
PHP print "Hello world!";

2>

.model small
.8tack 100h

Assembly

.data
msqg db '"Hello world!$'
.code
start:
mov ah, 09%h
lea dx, msg
int 21h
mov ax, 4C00h ;
int 21h

end start

DR JEFF

CSUN 7,) Q SOFTWARE
e “Hello World”-Java Applet ™ s
INTRO
Applet
Main article: Java applet

Java applets are programs that are embedded in other applications, typically in a Web page displayed in a web browser.

// Hello.java

import javax.swing.JApplet; “AWT” graphics

import java.awt.Graphics; has been replaced by
“FX” graphics
public class Hello extends JApplet { (anng with ”Swing”)

public void paintComponent(final Graphics g) {
g.drawString("Hello, world!", 65, 95);

The import statements direct the Java compiler to include the javax.swing.JAppletd and java.awt.Graphicsd classes in the compilation. The import
statement allows these classes to be referenced in the source code using the simple class name (i.e. JApplet) instead of the fully qualified class name (FQCN,
i.e. javax.swing.JApplet).

The Hello class extends (subclasses)the Japplet (Java Applet)class;the JApplet class provides the framework for the host application to display and
control the lifecycle of the applet. The Japplet class is a JComponent (Java Graphical Component) which provides the applet with the capability to display a
graphical user interface (GUI) and respond to user events.

The Hello class overrides the paintComponent (Graphics)& method (additionally indicated with the annotation, supported as of JDK 1.5, Override)
inherited from the Containerd superclass to provide the code to display the applet. The paintComponent () method is passed a Graphics object that
contains the graphic context used to display the applet. The paintComponent() method calls the graphic context drawString(String, int, int)&
method to display the "Hello, world!" string at a pixel offset of (65, 95) from the upper-left corner in the applet's display.

CSUN B8 sorrware
. Com pare Lan guages 201615 e robmn

C s Java

CSUN == ngTJ\::/iEE
TANTElNl\ERhIT\ C’ C++’ C VS . J ava ©2016- 19JeffDrobman

INTRO

**C (1971)
» origin: Base language — invented by Bell Labs for Unix
» level: low/system level (can embed assembly code)
» target: embedded systems (still most used)

o C++ (1979)
» origin: “C with classes” —invented by Bell Labs (Stroustrup)
» level/target: low/system/embedded + desktop (not web)
» flexible: supports “C-like” and/or OOP (classes) styles
» evolution: moving away from classes (OOP) > a “better C”

s C#t (2003)
» origin: invented by Microsoft for its “NET” apps on Windows only
» target: all applications, but mostly Web apps
**Java (2003)
origin: invented by Sun Microsystems for machine independence
target: all “client” computers on the WWW to run web apps

evolution: now Oracle, has “desktop” and “enterprise” versions (EE)
requires “JVM” or “JRE” to run programs

YV VYV

CSUN 7)) . . ﬁ Sgll:T.{EIZ;E
e CCY Application Languages: soessiwn.

INTRO
Object-oriented NO MIXED PURE
Compiled/Int Compiled Compiled Interpreted JVM/JRE
Intermediate Lang none none Bytecode
Output printf std::cout << system.out.printin
Input scanf std::cin >> input.next()
Strong Typing NO NO YES

Source File.ext .C .cpp Jjava

DR JEFF

CSUN -4 SOFTWARE

Google: Java vs. C++ oo
INTRO

What is it like to be a Java programmer at Google?

=

-y

Jason Roselander, Java developer

and Miguel Paraz, professional Java programmer since 2002

I've only been here 6 months, working on 1 team the entire time, but | have a few impressions of
Java at Google.

The main one is that C++ remains the primary programming language at Google. Google has
developed an extremely sophisticated, reliable & efficient C++ codebase and they're not about to
rewrite it in Java. Another reason seems to be that Google values memory & CPU utilization very
highly, and C++ allows them to squeeze every last cycle and byte out of their hardware.

So Google engineers, especially ones who've been there a long time, are very proficient in C++. As
a result, their Java tends to look a bit like C++. Massive source files which declare many inner
classes are prevalent. Output parameters to methods are not uncommon. Exceptions are banned in
Google C++ but not in Java, so exceptions aren't always used in the most idiomatic way.

As for tools & libraries, arguably two of the biggest libraries for Java outside of the Apache

previous job and assumed they'd be ubiquitous at Google. |

CSUN B soFrware
C++ at Google et

INTRO

Why did Google move from Python to C++ for use in its crawler?
Harald Tveit Alvestrand
Written Apr 20, 2015
When I had my first big project at Google, we wrote a proof-of-concept in Python, and
then discussed language for the production version.
Performance was not an issue; correctness was.
Jeff Dean (yes, himself) recommended C++ - his words were something like "Python
is maintainable until the guy who initially wrote the code leaves".
I still write stuff in Python, but sometimes I wonder if he spoke wisdom.

(we did switch to C++, and the project eventually failed. I don't think the language
switch was relevant to the end result.)

194 EbL \/os \J aanhas
21.5k Views - View Upvotes

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C++ vs. Java — Classes

@rW DR JEFF
IQI SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

C++

Java

class Foo { // Declares class Foo

int x; // Private Member variable
public:

Foo() : x(0) // Constructor for Foo;
initializes

{} // x to 0. If the initializer
were

// omitted, the variable would

not

// be initialized to a specific
// value.

int bar(int i) { // Member function bar()
return 3*i + x;

class Foo {
private int x;
declared

// Defines class Foo
// Member variable, normally

// as private to enforce
encapsulation
// initialized to 0 by default

public Foo() { // Constructor for Foo
} // no-arg constructor supplied
by default

public int bar(int i) {// Member method bar()
return 3*i + Xx;

Foo a;
// declares a to be a Foo object value,
// initialized using the default constructor.

// Another constructor can be used as
Foo a(args);

// or (C++11):

Foo a{args};

Foo a = new Foo();
// declares a to be a reference to a new Foo object
// initialized using the default constructor

// Another constructor can be used as
Foo a = new Foo(args);

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C++ vs. Java — Misc

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

C++

Extends C with object-oriented programming and generic programming. C code
can most properly be used.

Compatible with C source code, except for a few corner cases.
Write once, compile anywhere (WOCA).

Allows procedural programming, functional programming, object-oriented
programming, generic programming, and template metaprogramming. Favors a
mix of paradigms.

Runs as native executable machine code for the target instruction set(s).

Provides object types and type names. Allows reflection via run-time type
information (RTTI).

Has multiple binary compatibility standards (commonly Microsoft (for MSVC
compiler) and Itanium/GNU (for almost all other compilers)).

Optional automated bounds checking (e.g., the at () method in vector and
string containers).

Native unsigned arithmetic support.

Standardized minimum limits for all numerical types, but the actual sizes are
implementation-defined. Standardized types are available via the standard
library <cstdint> .

Pointers, references, and pass-by-value are supported for all types (primitive or
user-defined).

Memory management can be done manually via new / delete,
automatically by scope, or by smart pointers. Supports deterministic destruction
of objects. Garbage collection ABI standardized in C++11, though compilers are
not required to implement garbage collection.

Java
Strongly influenced by C++/C syntax.

Provides the Java Native Interface and recently Java Native Access as a way to
directly call C/C++ code.

Write once, run anywhere/everywhere (WORA/WORE).

Allows procedural programming, functional programming (since Java 8) and
generic programming (since Java 5), but strongly encourages the object-
oriented programming paradigm. Includes support for creating scripting
languages.

Runs on a virtual machine.

Is reflective, allowing metaprogramming and dynamic code generation at
runtime.

Has one binary compatibility standard, cross-platform for OS and compiler.

All operations are required to be bound-checked by all compliant distributions of
Java. HotSpot can remove bounds checking.

Native unsigned arithmetic unsupported. Java 8 changes some of this, but
aspects are unclear.!']

Standardized limits and sizes of all primitive types on all platforms.

All types (primitive types and reference types) are always passed by value.”

Automatic garbage collection. Supports a non-deterministic finalize() method
which use is not recommended. !

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C++ vs. Java — More

) DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

C++

Operator overloading for most operators. Preserving meaning (semantics) is
highly recommended.

Single and Multiple inheritance of classes, including virtual inheritance.

Compile-time templates. Allows for Turing complete meta-programming.

Function pointers, function objects, lambdas (in C++11), and interfaces.

No standard inline documentation mechanism. Third-party software (e.g.
Doxygen) exists.

const keyword for defining immutable variables and member functions that do
not change the object. Const-ness is propagated as a means to enforce, at
compile-time, correctness of the code with respect to mutability of objects (see
const-correctness).

Supports the goto statement.

Source code can be written to be cross-platform (can be compiled for Windows,
BSD, Linux, OS X, Solaris, etc., without modification) and written to use
platform-specific features. Typically compiled into native machine code, must be
recompiled for each target platform.

Java

Operators are not overridable. The language overrides + and += for the String
class.

Single inheritance of classes. Supports multiple inheritance via the Interfaces
construct, which is equivalent to a C++ class composed of abstract methods.

Generics are used to achieve basic type-parametrization, but they do not
translate from source code to byte code due to the use of type erasure by the
compiler.

References to functions achieved via the reflection APl. OOP idioms using
Interfaces, such as Adapter, Observer, and Listener are generally preferred over
direct references to methods.

Extensive Javadoc documentation standard on all system classes and methods.

final provides a version of const , equivalentto type* const pointers
for objects and const for primitive types. Immutability of object members
achieved via read-only interfaces and object encapsulation.

Supports labels with loops and statement blocks.

Compiled into byte code for the JVM. Byte code is dependent on the Java
platform, but is typically independent of operating system specific features.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

C++ vs. Java — Libraries

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

C++ stdClLib

Java

The C++ Standard Library was designed to have a limited scope and functions,
but includes language support, diagnostics, general utilities, strings, locales,
containers, algorithms, iterators, numerics, input/output, random number
generators, regular expression parsing, threading facilities, type traits (for static
type introspection) and Standard C Library. The Boost library offers more
functions including network 1/O.

A rich amount of third-party libraries exist for GUI and other functions like:
Adaptive Communication Environment (ACE), Crypto++, various XMPP Instant
Messaging (IM) libraries,*! OpenLDAP, Qt, gtkmm.

The standard library has grown with each release. By version 1.6, the library
included support for locales, logging, containers and iterators, algorithms, GUI
programming (but not using the system GUI), graphics, multi-threading,
networking, platform security, introspection, dynamic class loading, blocking and
non-blocking I/O. It provided interfaces or support classes for XML, XSLT, MIDI,
database connectivity, naming services (e.g. LDAP), cryptography, security
services (e.g. Kerberos), print services, and web services. SWT offers an
abstraction for platform-specific GUIs.

« The core libraries, which include:

« IO/NIO
» Networking

Java

» Reflection

» Concurrency

» Generics

« Scripting/Compiler

» Functional Programming (Lambda, Streaming)

« Collection libraries that implement data structures such as lists, dictionaries, trees, sets, queues and double-ended queue, or stacks!

« XML Processing (Parsing, Transforming, Validating) libraries
« Security!83]
« Internationalization and localization libraries(64]

CSUN B sorrware
S p ee d Te St ©2016-19 eff Drobman

INTRO

47630

47630 m Nested Loops Test, seconds

Benchmark Time [sec] | Factor

- C++ Opt 23| 1.0x
" C++ Dbg 197 | 8.6x
” Java 64-bit 134 5.8x
- Java 32-bit 290 | 12.6x
= Java 32-bit GC* 106 4.6x
- Java 32-bit SPEC GC 89 3.7x

400

350

250

150

100

52 52

33— 44

¢ 6 6 6 7 7 8 10 10 10 10 4 18 2 2

0
Java7 OpenJDK 6 Gol133 C++ Asm Nodejs0.10.25 Phantomjs 1.9 HHVM3.4 HHVM39 PHP7 (alpha2) Gambas 3 PHP56 Peri5182 Python2.7.6 Bash
Java 8 OpenJDK 7 Gol31l Lualdit20.2 Cc Nodejs0.124 Go (Ubuntu4.9) Phantomjs 20 PyPy22.1 HHVM3.7.3 Lua523 PHP5.5 PHP54 Ruby19.3p484 Python3.4

CSUN : B sorrware
HLL Comparison et i

INTRO

TIOBE Programming Community Index Usage

Source: www.tiobe.com

30
25
== Java
- C
20 C++
== Objective-C
£ — CH#
% 1s === Python
% JavaScript
o == Visual Basic NET
w== PHP
1o Visual Basic
[}
-
; e W\ T AW w *\\\ |
v
’) | - .
A . b 4
0 - "/

2002 2004 2006 2008 2010 2012 2014

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

HLL Comparison

©2016-19 Jeff Drobman

Language #
C

C++

Fortran

Java

Perl
Smalltalk
Python

Statements ratio*®! ¢
1

2.5

2

2.5

6

6

6

Code size

Lines ratio/®* &

1
1
0.8
1.5
6
6.25
6.5

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Language ¢

ActionScript 3.0
Ada

Aldor

ALGOL 58

ALGOL 60

ALGOL 68

Ateji PX

APL

Assembly
language

BASIC

HLL Comparison

DR JEFF

| SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Object-
Intended use + | Imperative ¢ ¢ | Functional ¢
oriented
Application, client-
. Yes Yes
side, web
Application,
embedded, Yes Yes?!
realtime, system
Highly domain-
specific, symbolic Yes Yes Yes
computing
Application Yes
Application Yes
Application Yes
Parallel application Yes
Application, data
processing
General Yes
Application,
-) Yes
education

Procedural ¢

Yes!®!

Yes

Generic $

Yes'!

Event- Other

Reflective ¢ $ B
driven paradigm(s)

-

Yes

concurrent,®]
distributed,®!

concurrent

pi calculus

array-oriented,
tacit

any, syntax is
usually highly
specific,
related to the
target
processor

Standardized? $

1996, ECMA

1983, 2005, 2012,
ANSI, ISO, GOST
27831-88!7]

No

No

1960, IFIP WG
2.1, 1ISOE!

1968, IFIP WG
2.1, GOST
27974-88,19!

No

1989, ISO

No

1983, ANSI =,
ISO

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

INTRO

Language

C++

Go

Haskell

Java

JavaScript

HLL Comparison

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Intendeduse 2

Application,
system, '] general
purpose, low-level

operations

Application, system

Application, RAD,
business, client-
side, general,
server-side, web

Application, web,
server-side

Application

Application,
business, client-
side, general,
mobile
development,
server-side, web

Client-side, server-
side, web

Imperative ¢

Yes

Yes

Yes

Yes

Yes

Yes

Object-
oriented

Yes

Yes

Yes

Yes

¢ Functional ¢

Yes

Yes!4]

Yes

Yes

Yes

Yes

Procedural ¢

Yes

Yes

Yes

Yes

Yes

Generic ¢

Yes

Yes

Yes

Yes

Reflective ¢

Yes

Yes

Yes

Yes

Event- Other
driven paradigm(s)

structured,
concurrent

Yes concurrent

lazy evaluation

Yes concurrent

prototype-
based

¢ Standardized? ¢

1989, ANSI C89,
ISO C90, ISO
€99, ISO c11(12

1998, ISO/IEC
1998, ISO/IEC
2003, ISONEC
2011,ISO/IEC
201413

2000, ECMA,
SOl

De facto standard
via Go Language
Specification &
2010, Haskell
20102

De facto standard
via Java
Language
Specification &

1997, ECMA

CSUN .
HLL Comparison

DR JEFF

22| soFTwaRE
INDIEAPPDEVELOPER
©2016-19 Jeff Drobman

Object- Event- Other)
Language ¢ Intendeduse ¢ Imperative ¢ ¢ Functional ¢ Procedural ¢ Generic ¢ Reflective ¢ B ¢ Standardized? ¢
oriented driven paradigm(s)
Application,
Pascal PP _ Yes Yes 1983, 1SO™2¢]
education
Application,
Perl scripting, text Yes Yes Yes Yes Yes Yes No
processing, Web
Server-side, web
PHP o Yes Yes!2?) Yes!30) Yes Yes No
application, web
PLA Application Yes Yes Yes 1969
Application,
general, web,
Python scripting, artificial Yes Yes Yes Yes Yes aspect-oriented No
intelligence,
scientific computing
- 2011(JIS X 3017),
Application, .
Ruby L Yes Yes Yes Yes aspect-oriented | 2012(ISO/IEC
scripting, web
30170)
De facto standard
o via Scala
Application,
Scala . Yes Yes Yes Yes Yes Yes Language
distributed, web I
Specification
(SLS) .4
Swift Application, general Yes Yes Yes Yes Yes Yes concurrent No
Application, RAD,
; structured,
Visual Basic .NET | education, web, Yes Yes Yes Yes Yes Yes Yes No
concurrent

business, general

&% DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

HLL Usage

Programming languages used in most popular websites*

Popularity Front-
(unique end Back-end
Websites ¢ $ Database Notes
visitors per (Client- (Server-side)
month)!'] side)
WordPress.com | 240,000,000 JavaScript | PHP, JavaScript?”! (Node.js) MySQL
MySQLLcttation neode] "MediaWiki" is programmed in PHP,
Wikipedia.org 475,000,000 JavaScript | PHP, Hack) 8 " | runs on HHVM; free online
MariaDB!18])
encyclopedia
MySQL, Yahoo is presently*"¢"? transitionin
Yahoo 750,000,000 JavaScript | JavaScript,l'4 PHP Y - ,p1 - y g
PostgreSQL!'S] to Node.js(14]
eBay.com 285,000,000 JavaScript | Java,?'] JavaScript(2?] Oracle Database Online auction house
Linkedin.com | 260,000,000 JavaScript | Java, JavaScript,[2® Scala Voldemort!24] World's largest professional network
Amazon.com | 500,000,000 JavaScript | Java, C++, Perl('8] Oracle Database!'”] | Popular internet shopping site
| Hack, PHP (HHVM), Python, C++, MySQL,["? HBase .) o
Facebook.com | 900,000,000 JavaScript 9 10 " 13 The most visited social networking site
Java, Erlang, D,'®] Xhp,[1% Haskelll'!! | Cassandral'3
Django(25] (a Python framework),
Pinterest 250,000,000 JavaScript Jango™=" (a Pyt) MySQL, Redis?8]
Erlang
) 6l ATl BigTable, - ; T
YouTube.com 1,100,000,000 JavaScript | C/C++, Python, Java,® Gol”) MariaDBISTE] The most visited video sharing site
BigTable,“! The most used search engine in the
Google.com® | 1,200,000,000 JavaScript | C, C++, Go,®! Java, Python 9 I 9
MariaDB!5] world
Twitter.com 290,000,000 JavaScript | C++, Java, Scala, Ruby on Rails('9! MySQL20] 140 characters social network
. . Microsoft SQL
Bing 285,000,000 JavaScript | ASP.NET
Server
Microsoft SQL An email client, for simple use. Mostl
MSN.com 280,000,000 JavaScript ASP.NET P 4
Server known as "messenger".
Microsoft SQL
Microsoft 270,000,000 JavaScript | ASP.NET Software company

Server

S DR JEFF

CSUN HLL U SOFTWARE
CALIFORNIA INDIE APPDEVELOPER
STATE UMIVEASITE L L S a g e ©2016-19 Jeff Drobman

INTRO

Back-end (Server-side) table in most popular websites

Websites ¢ ASPNET ¢ |C ¢ |C++ ¢ |D ¢ |Erlang ¢ | Go ¢ | Hack ¢ | Java ¢ | JavaScript ¢ | Perl $ | PHP ¢ | Python ¢ | Ruby ¢ Scala ¢ | Xhp ¢

Google.com 0 e e 0 0 g 0 g 0 0 0 S 0 0 0
YouTube.com 0 e ¢ 0 0 s 0 g 0 0 0 e 0 0 0
Facebook.com 0 0 e c c 0 e e 0 0 c S 0 0 e
Yahoo 0 0 0 0 0 0 0 0 e 0 c 0 0 0 0
Amazon.com 0 0 e 0 0 0 0 e 0 c 0 0 0 0 0
Wikipedia.org 0 0 0 0 0 0 0 0 0 0 e 0 0 0 0
Twitter.com 0 0 S 0 0 0 0 e 0 0 0 0 0 0 0
Bing e 0 0 0 0 0 0 0 0 0 0 0 0 0 0
eBay.com 0 0 0 0 0 0 0 e e 0 0 0 0 0 0
MSN.com e 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Microsoft

Linkedin.com 0 0 0 0 0 0 0 e e 0 0 0 0 o 0
Pinterest S

Ask.com

WordPress.com 0 0 0 0 0 0 0 0 e 0 e 0 0 0 0

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

HLL-Java

DR JEFF

¥ SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Java

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Java

Paradigm Multi-paradigm: Object-oriented
(class-based), structured,
imperative, generic, reflective,
concurrent

Designed by James Gosling

Developer Sun Microsystems (now owned

by Oracle Corporation)
First appeared May 23, 1995; 21 years ago!'!

Typing Static, strong, safe, nominative,

discipline manifest

License GNU General Public License,
Java Community Process

Filename Jjava, .class, .jar

extensions

Website java.netg’

Major implementations

OpenJDK, GNU Compiler for Java (GCJ), many
others

Dialects

Generic Java, Pizza

Java Intro

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Principles

There were five primary goals in the creation of the Java language:!'€]

It must be "simple, object-oriented, and familiar".
It must be "robust and secure".

It must be "architecture-neutral and portable".

It must execute with "high performance".

It must be "interpreted, threaded, and dynamic".

o »w0np -

Versions
Main article: Java version history

As of 2015, only Java 8 is supported ("publicly”). Major rele

« JDK 1.0 (January 21, 1996)

« JDK 1.1 (February 19, 1997)

« J2SE 1.2 (December 8, 1998)

« J2SE 1.3 (May 8, 2000)

« J2SE 1.4 (February 6, 2002)

« J2SE 5.0 (September 30, 2004)
« Java SE 6 (December 11, 2006)
« Java SE 7 (July 28, 2011)

« Java SE 8 (March 18, 2014)

Designed by James Gosling

Developer Sun Microsystems (now owned

by Oracle Corporation)

First appeared May 23, 1995; 21 years ago!'!

Typing
discipline

Static, strong, safe, nominative,
manifest

GNU General Public License,
Java Community Process

License

Filename Jjava, .class, .jar
extensions
Website java.net@
Major implementations
OpenJDK, GNU Compiler for Java (GCJ), many
others
Dialects

Generic Java, Pizza
Influenced by
Ada 83, C++,2 c#,! Eiffel,l*] Generic Java,
Mesa,!®! Modula-3,!®! Oberon,”! Objective-C, 8!
UCSD Pascal,l®I'%! Opject Pascall'!!
Influenced

Ada 2005, BeanShell, C#, Chapel,['Zl Clojure,
ECMAScript, Fantom, Groovy, Hack, '3l Haxe,
Ji#, JavaScript, Kotlin, PHP, Python, Scala,
Seed7, Vala

CSUN : B8 sorrware
Java Histo ry 201615 e robmn
INTRO
History Wikipedia

See also: Java (software platform) § History

James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June 1991.22] Java was originally
designed for interactive television, but it was too advanced for the digital cable television industry at the time.[23! The language was
initially called Oak after an oak tree that stood outside Gosling's office. Later the project went by the name Green and was finally
renamed Java, from Java coffee.[??] Gosling designed Java with a C/C++-style syntax that system and application programmers
would find familiar.[25]

Sun Microsystems released the first public implementation as Java 1.0 in 1995.26] |t promised "Write Once, Run Anywhere"
(WORA), providing no-cost run-times on popular platforms. Fairly secure and featuring configurable security, it allowed network- and
file-access restrictions. Major web browsers soon incorporated the ability to run Java applets within web pages, and Java quickly
became popular, while mostly outside of browsers, that wasn't the original plan. In January 2016, Oracle announced that Java
runtime environments based on JDK 9 will discontinue the browser plugin.[?”] The Java 1.0 compiler was re-written in Java by Arthur
van Hoff to comply strictly with the Java 1.0 language specification.28! With the advent of Java 2 (released initially as J2SE 1.2 in
December 1998 — 1999), new versions had multiple configurations built for different types of platforms. J2EE included technologies
and APIs for enterprise applications typically run in server environments, while J2ME featured APIs optimized for mobile applications.
The desktop version was renamed J2SE. In 2008, for marketing purposes, Sun renamed new J2 versions as Java EE, Java ME, and
Java SE, respectively. Duke, the Java mascot &7

In 1997, Sun Microsystems approached the ISO/IEC JTC 1 standards body and later the Ecma International to formalize
Java, but it soon withdrew from the process.29I30I31] Java remains a de facto standard, controlled through the Java
Community Process.[*2] At one time, Sun made most of its Java implementations available without charge, despite their
proprietary software status. Sun generated revenue from Java through the selling of licenses for specialized products such
as the Java Enterprise System.

On November 13, 2006, Sun released much of its Java virtual machine (JVM) as free and open-source software, (FOSS),
under the terms of the GNU General Public License (GPL). On May 8, 2007, Sun finished the process, making all of its
JVM's core code available under free software/open-source distribution terms, aside from a small portion of code to which
Sun did not hold the copyright.[33]

Sun's vice-president Rich Green said that Sun's ideal role with regard to Java was as an "evangelist".[**! Following Oracle
Corporation's acquisition of Sun Microsystems in 2009-10, Oracle has described itself as the "steward of Java technology
with a relentless commitment to fostering a community of participation and transparency".’®3! This did not prevent Oracle James Gosling, the creator of Java
from filing a lawsuit against Google shortly after that for using Java inside the Android SDK (see Google section below). Java (2000

&1

CSUN C. 824 sorrware
Java Description

INTRO
Java (programming language)

From Wikipedia, the free encyclopedia

"Java language" redirects here. For the natural language from the Indonesian island of Java, see Javanese language
This article is about a programming language. For the software package downloaded from java.com, see Java SE.
Not to be confused with JavaScript.

Java is a general-purpose computer programming language that is concurrent, class-based, object-oriented, %! and
specifically designed to have as few implementation dependencies as possible. It is intended to let application
developers "write once, run anywhere" (WORA), '3 meaning that compiled Java code can run on all platforms that
support Java without the need for recompilation.['! Java applications are typically compiled to bytecode that can run
on any Java virtual machine (JVM) regardless of computer architecture. As of 2016, Java is one of the most popular
programming languages in use, 171181119120 particularly for client-server web applications, with a reported 9 million
developers.[?'] Java was originally developed by James Gosling at Sun Microsystems (which has since been acquired
by Oracle Corporation) and released in 1995 as a core component of Sun Microsystems' Java platform. The language
derives much of its syntax from C and C++, but it has fewer low-level facilities than either of them.

The original and reference implementation Java compilers, virtual machines, and class libraries were originally
released by Sun under proprietary licences. As of May 2007, in compliance with the specifications of the Java
Community Process, Sun relicensed most of its Java technologies under the GNU General Public License. Others
have also developed alternative implementations of these Sun technologies, such as the GNU Compiler for Java
(bytecode compiler), GNU Classpath (standard libraries), and IcedTea-Web (browser plugin for applets).

The latest version is Java 8, which is the only version currently supported for free by Oracle, although earlier versions
are supported both by Oracle and other companies on a commercial basis.

e DR JEFF
- SOFTWARE

CALIFORNIA : INDIE APPDEVELOPER
STATE UNIVERSITY a Va e rS I O I l S ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

Jan 30, 2018
A new version of Java is available!

‘é) Java 8 Update 161 build 12 is now available—you have Java 8 Update 151 build 12.
) Would you like to download it now?

«
= Javar

Installing Java ...

3 Billion

Devices Run Java

_:\ !]ava' #1 Development Platform m

You already have Java installed. To improve
security and save energy, Safari did not activate
Java after it was installed.

When you visit a website that needs Java, you can turn it on in
Safari Websites preferences.

Open Safari Websites Preferences “

Sf) DR JEFF
CSUN Q SOFTWARE
Java 6201615 e e

INTRO
Wikipedia
Java platform
Main articles: Java (software platform) and Java virtual machine @ portability

One design goal of Java is portability, which means that programs written for the Java platform must run similarly on any
combination of hardware and operating system with adequate runtime support. This is achieved by compiling the Java
language code to an intermediate representation called Java bytecode, instead of directly to architecture-specific machine
code. Java bytecode instructions are analogous to machine code, but they are intended to be executed by a virtual machine
(VM) written specifically for the host hardware. End users commonly use a Java Runtime Environment (JRE) installed on
their own machine for standalone Java applications, or in a web browser for Java applets. < JRE

Standard libraries provide a generic way to access host-specific features such as graphics, threading, and networking.

The use of universal bytecode makes porting simple. However, the overhead of interpreting bytecode into machine
instructions makes interpreted programs almost always run more slowly than native executables. However, just-in-time (JIT)
compilers that compile bytecodes to machine code during runtime were introduced from an early stage. Java itself is
platform-independent, and is adapted to the particular platform it is to run on by a Java virtual machine for it, which translates
the Java bytecode into the platform's machine language. @

s Interpreter
o JIT

DR JEFF

CSUN . B soFTwARE

- Java Syntax & Source Files s
INTRO

Syntax

Main article: Java syntax

The syntax of Java is largely influenced by C++. Unlike C++, which combines the syntax for structured, generic, and object-oriented programming, Java was built
almost exclusively as an object-oriented language.['8! All code is written inside classes, and every data item is an object, with the exception of the primitive data
types, i.e. integers, floating-point numbers, boolean values, and characters, which are not objects for performance reasons. Java reuses some popular aspects of
C++ (such as printf() method).

Unlike C++, Java does not support operator overloading?) or multiple inheritance for classes, though multiple inheritance is supported for interfaces.®] This
simplifies the language and aids in preventing potential errors and anti-pattern design [citation needed]

Java uses comments similar to those of C++. There are three different styles of comments: a single line style marked with two slashes (//), a multiple line style
opened with /* and closed with */ , and the Javadoc commenting style opened with /** and closed with */ . The Javadoc style of commenting allows the
user to run the Javadoc executable to create documentation for the program.

Java Source Files

Source files must be named after the public class they contain, appending the suffix .java , for example, HelloWorldApp.java . It must first be compiled into
bytecode, using a Java compiler, producing a file named HelloWorldApp.class . Only then can it be executed, or "launched". The Java source file may only
contain one public class, but it can contain multiple classes with other than public access and any number of public inner classes. When the source file contains
multiple classes, make one class "public" and name the source file with that public class name.

A class thatis notdeclared public may be stored in any .java file. The compiler will generate a class file for each class defined in the source file. The name of
the class file is the name of the class, with .class appended. For class file generation, anonymous classes are treated as if their name were the concatenation of the
name of their enclosing class, a $, and an integer.

CSUN

CALIFORNIA
TTTTTTTTTTTTTT
NORTHRIDGE

INTRO

i Y\ DR JEFF
. SOFTWARE
Running Java e ommes

Java source code hello.java

s Compile

hello.class

Java bytecode

Java API
% Interpret (JIT) (javax.*)

java hello

Java Run-time

JVM/JRE

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

JVM

3| DR JEFF
1) SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Portable language via Interpreter (JVM)

Sww s | Uptete | Save | teamty | Adunces

L
B AR el daa s Jech Ly d T,

Petaan Letirgs
Fetant 3210 e ol sher msirg Iene! trvotiong By Sctaur, Josd sl e Pe Actaen

Yooy owret N

Phew 10 U 1 Jeve et e MIred 11 8 oead foloer S ok weecution e, Orvy
ateacrd ery w0 celenn San Tecty e settree

[femrge.. | vew. |

Sen 1 Pulravsst w wrdind e Te Ty ey

User
Applications

Java Control Panel, version 7 &J

JVM

Hardware
CPU

STACK MODEL

sourcecode.java

bytecode.class

s Windows
** Mac 0OS
% Unix

ONION SKIN MODEL

TTTTTTTTTTTTTTT
NORTHRIDGE

INTRO

Software

DR JEFF
SOFTWARE

©2016-19 Jeff Drobman

Platiorms

CSUN g sg_IETJ\Sz;E
Software Platforms sz v

INTRO

¢ Standalone Applications s* Embedded Control
O Native O Appliances
> Desktop O Cars/airplanes
» Mobil apps (phone/tablet) O Phones/tablets
d Web > i0S
» Client (“Front end” via browser) » Android
» Server ("Back end”) [Computer Peripherals

» Storage devices
> Printers

&r) DR JEFF
CSUN &) soFTwaRE
A pp Ty pes 6201615 e rom

s NATIVE
<> Runs directly on the device/computer on its OS
= Computer (desktop or laptop)
= Mobile (phone or tablet)

s WEB
<> Runs remotely on the website server and is
displayed on the device/computer via its Browser
** Mobile Web Apps
< redesigned websites for display on mobile devices
(phones, tablets) that include applications (“Web

Apps”)

CSUN B8 ke
Standalone Platforms eaesisen

INTRO

HLL typesVB HLL types-Java HLL typesGO HLL types 2 HLL types1 & £

¢ Standalone Applications

d Native
» Desktop
= Universal (“Office”)
= Specialized <- THIS CLASS
» Mobil apps (phone/tablet)

d Web
» Client (“Front end” via browser)
= Desktop e s s

» Server ("Back end”)

DR JEFF

CSUN : (&) soFTwARE
Popular iPhone Apps s

INTRO
{ Featured Best of 2015 .= { Featured Best of 2015

Apps Games
2. Runner-Up 2. Runner-Up

The best all-in-one Managing life in
1. App of the 1. Game of the photo editor provides Fallout’s famous
Year Year powerful tools that vaults is a standout

. _ are easy to use. strategy experience.
This game-changer Tomb Raider’s

made sharing and puzzler spinoff

watching live videos floored us with its
an instant obsession. beauty and clever
design.

Enlight Fallout Shelter
Lightricks Ltd. Bethesda

*$3.99 -
GET

Periscope
Twitter, Inc. Lara Croft GO
SQUARE ENIX INC

GET

@ DR JEFF
Igl SOFTWARE
AAAAAAAAAA INDIEAPPDEVELOPER
smazh v SOftwa re ©2016-18 Jeff Drobman

Tools
SDK/IDE

CSUN : B4 soFrware
Software Tool Chain

INTRO

s Compilers
» Compiled languages (C, C++, C#, VB)
<> Compile completely: Translate HLL (.c, .h) into ASM (.asm)
» Interpreted languages (Java, Pascal)
<> Compile incompletely (“JIT”) to an “intermediate” language
<~ “Pseudo” code is compiled at run time (slow)
s Assemblers
<> Translate ASM (.asm) into linkable machine code modules (“LM”)
¢ Linkers
<> Combine (“link”) LM modules into a single “executable” (.exe)

<> Resolve external references
<> Embed calls to dynamic “link libraries” or “frameworks” (.dll files)

» Debuggers

** SDK contains Compilers + APl (Libraries) + IDE
** IDE is a development environment w/debugger

CSUN B sorrware
IDE + Platforms err i

INTRO

€ C code
COMPILER
<«<——— Java
JAVA IL-bytecode < l
|
{ ASM € .asm
RUN _
JAVA VM l |
i ROM | .obj
LINKER/LIB ROM by
l ROM bj
HEX Abs Obj Mod
% .exe

RUN :
PROM -bin
burner .

AAAAAAAAAAAA
STATE UNIVERSITY

% DR JEFF
82 soFTwaRE
S D K ©2016-i9 Jeff Drobman

** SDK = IDE & Compiler (for C/C++)
1 Eclipse

d GNU gcc
a Windows

a Pi (MinGW)
d MS Visual Studio
d IAR

CSUN

DR JEFF
SOFTWARE

Running/Debugging ., =

INTRO Embedded Systems
SIMULATOR EMULATOR
SOFTWARE . Substitute
HARDWARE
U Debugger runtime 4 ICE (in-circuit)
environment in (IDE) = Pods
U Breakpoints " Breakpoints
O Watch variables "= Trace triggers &
U Target device buffers
selection d Memory (known good)
= PC = R/W (ROM/RAM)
= Phone/tablet = Wait states

" Board =)

HARDWARE
Actual
HARDWARE -

[Code burned into ROM
O Working RAM
[Can use ICE
 Board bring-up
(1 Built-in test

= JTAG
J Logic analyzers

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

SDK/IDE

DR JEFF

252 soFTwARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

SOFTWARE DEV KIT
INTEGERATED DEV ENVIRONMENT

**SDK
> JDK
**|IDE
> jGrasp
» Eclipse
» MPlab
**SDK+IDE

> MS Visual Studio

= NET
= UWP — Cross-platform

» Apple Xcode

COUN rﬁ%} SOFTWARE
STAEE::‘,E&E‘{%,};%TY D eve I O p m e nt P | ath r 2016-19 Jeff Drobman
INTRO
& Desi Software Applications:
* eSIg-n Development Platforms
J Microsoft

<> OS = Windows (7, 8, 10)

<> APl = .NET Framework

<> SDK/IDE = Visual Studio Cross Platform

<> Languages = .NET versions of VB, C#, C++, Java

d Apple

< OS = Mac 0S X, iOS (mobile)

<> API| = Xcode (Cocoa Touch)

<> SDK/IDE = Xcode

<> Languages = Objective C, Swift
J Google

<> OS = Android

<> APl = Android

<> SDK/IDE = Android

<> Languages = C++

DR JEFF

CALIFORNIA I ' INDIE APPDEVELOPER
STATE UNIVERSITY W I l l D ev — U W ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO WINDOWS 10 -

Universal Windows Platform

One concept behind the Universal
Windows Platform is to make it as easy

as possible to develop for Windows ogge
regardless of your primary platform...) 1 Bl "lon &
= One binary / package WI ndOWS 1 O DeV|CeS

= One store .

= Language of your choice .
= C#, VB, C++ with XAML

= JavaScript with HMTL/CSS H .

1

C++ with Microsoft DirectX
Android: Java/C++
iOS: Objective C (not Swift...yet) Windows Store

= Android and iOS projects can be Universal Windows Platform

pulled into Visual Studio and compiled
just like any other Windows
application, creating the same single
binary/package that will run on

Windows devices just like native N ET & WI n32

Windows applications

Android 10S

Java/C++ Objective C

pa EFF
CSUN . B8 sorrware
STA?I'::LJZ?SE;QITY W I n D e V ©2016-1NS;)IJE21;P|§?:£::Z:\

NORTHRIDGE

INTRO

C# and the Code Behind

= C# isn’t the only language that can be used to write UWPAS, you can also use Visual Basic,
C++, Java, JavaScript, and Objective C, but here we’re focusing on C#

= |[n a Visual Studio solution, C# is contained in “code-behind/code-beside” files that are
associated with XAML files, such as MainPage.xaml.cs, as well as standard code files like classes

= Each XAML file has a .xaml.cs code-behind file that contains all of the C# code that helps the
XAML do stuff, like event handlers for Ul elements, setting data contexts for Ul element data
bindings, and other things not easily done in XAML or more easily done in C#

= |f you're just learning C#, this is the same C# you’ve being using to write console applications
while learning basic concepts, the only difference is you’re using a lot more of the API

New Screencasts New Course

NETHUE e

e

Try .NET MVC

Learn the basics of building web applications with
ASP.NET MVC.

. Learn More
Build a .NET MVC App vy ——y—y ——

CSUN : : B sorrware
MS Visual Studio et i

INTRO

bq] Visual Studio g Visual Studio .

Community 2015

Community 2015

Choose your installation location - -
i Select features

C:\Program Files (x86)\Microsoft Visual Studio 14.0

Setup requires up to 6 GB across all drives. B Programming Languages

b |« Visual C++
Choose the type of installation

A al A
sual F#
‘O 2ua

Typical Pvil Toolks for Visual St
Python Tools for Visual Studio
Includes C#/VB Web and Desktop features -
B Costom Windows and Web Development
Allows you to customize features for your installation l Cross Platform Mobile Development

Common Tools
You can add or remove additional features at any time after setup via

Programs and Features in the Control Panel.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Objective C

DR JEFF
* | SOFTWARE
iI0S — Xcode

Xcode

Version 7.2 (7C68)

Apple logo are trademarks of Apple Inc., registered in the U.S. and
other countries

Acknowledgments License Agreement

CSUN : B34 soFrware
I0S — Xcode 6201615 e

INTRO

Obijective C

LLVM Compiler

LLVM

Low-Level | Code
Optimization Generation

Swift

Swift Compiler

Swift LLVM

Parsi Htgh-l.evel Low-Level | Code
n9 Optlmlzauon Optimization Generation

DR JEFF

CSUN . . SOFTWARE
CALIFORNIA (INDIE APPDEVELOPER
STA;;:;;]:{[RVII;.‘)];SEITY I O S X C O d e O bJ ©2016-19 Jeff Drobman

INTRO

Objective-C

Zimport “Spaceship.h"

Spaceship.h

Zimport “Vehicle.h"
Zimport "Planet.h"

Spaceship.m

@interface Spaceship()

declaration of private methods (as needed
@property (nonatomic, strong) Hormhole snearestWormhole;
@end

@interface Spaceship : Vehicle
declaration of public methods
@property (nonatomic) double topSpeed; @implementation Spaceship

- (void)orbitPlanet: (Planet =)aPlanet
atAltitude: (double)km;

imp lementation of public and private methods

@synthesize topSpeed = _topSpeed
@synthesize nearestWormhole = _nearestwWormhole;

- (void)setTopSpeed: (double)speed

{
if ((speed < 1) && (speed > 0)) _topSpeed

- (void)orbitPlanet: (Planet =)aPlanet atAltitude: (double)km
{

* ' ~ " 4 nr_lT »
put ne coge to a pLanet here

ey : double speed = [self topSpeed];
eres anofher qmple of sending a message. if (speed > MAX RELATIVE) speed = MAX RELATIVE;
It looks like this method has 2 arguments: [[self nearestWormhole] travelToPlanet:aPlanet

a to travel to and a to travel at. atSpeed:speed];
- - }
It is being sent fo an instance of ‘ Square brackets inside square brackets. sanford CSI93g

@end

AAAAAAAAAAAA
STATE UNIVERSITY

Software Design

Computer
Science

DR JEFF
SOFTWARE

©2016- 19J ffD bm

CSUN : el B soFrware
Algorithm Definition s

INTRO

algorithm | ‘algariTHam | Procedure = Process

noun

a process or set of rules to be followed in calculations or other problem-solving
operations, especially by a computer: a basic algorithm for division.

Algorithm % Sequence of steps

> Deterministic

From Wikipedia, the free encyclopedia > NON-Deterministic

For other uses, see Algorithm (disambiguation).

of how to solve a class of problems. Algorithms can perform calculation, data processing and automated reasoning tasks.

An algorithm is an effective method that can be expressed within a finite amount of space and time‘'! and in a well-defined
formal language!®! for calculating a function.!®! Starting from an initial state and initial input (perhaps empty),!* the
instructions describe a computation that, when executed, proceeds through a finitel>! number of well-defined successive
states, eventually producing "outgut"ls] and terminating at a final ending state. The transition from one state to the next is not
necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.[”]

Algorithm
INPUT F=» PROCESS = OUTPUT

CSUN . o
Algorithm Definition

INTRO

DR JEFF

25 soFTwaARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

¢ Instructions (recipe)
» Step-by-step (control sequence)
» Solving a problem or performing a task

¢ Execution
» Executed in any control sequence (processes)
» Dictated by control constructs (procedures)

¢ Result
» Output (e.g., computations)
» Transformation (e.g., games, simulations)

¢ Properties
» Well-formed
» Optimal (in time/code space)
» Terminates (in finite time)
= Stops (“Halts”)
= Waits (for user input)

CSUN : : B4 soFrware
History of Algorithms eeesiicen,

INTRO

EPONYMS

something someone

algorithm

He was born around 780 AD in the

¢ 9th century Persian
mathematician
‘0

he Hindu-Arabic number system,

.

Algebra

% 13t century usage
by Chaucer

19t century intro’d
20t century first use
in computing by
Alan Turing

CSUN . - oFwane
e Algorithms as Flowcharts s

INTRO

Simple Sales

Get the Get the Total =

Models Control Flow:

= sequence of operations

= conditionals: branching/skipping
= formulas

number price of Price *
of items the item Number

Tax = Total =

Decisions — € IENE o] [Yes Total *

Total +

Tax rate Tax

2
@)

Output

the total

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

DR JEFF
SOFTWARE

Algorithms as Flowcharts s

uclid's algorithm for the
greates t common divisor (gcd
of two numbers

ENTRY

INPUT A, B

—
<>
<>

no (< or =]

B« B-A |

GOTO2 |

R

| —

I

A< A-B |

I

GoTo2 |

|

¥

PRINT A

** Conditional execution (decisions)
¢ Iterative execution (Loops)

Flow chart of an algorithm (Euclid's &J
algorithm) for calculating the greatest
common divisor (g.c.d.) of two numbers
a and b in locations named A and B.
The algorithm proceeds by successive
subtractions in two loops: IF the test B =
A yields "yes" (or true) (more accurately
the number b in location B is greater
than or equal to the number a in location
A) THEN, the algorithm specifies B « B
- A (meaning the number b - a replaces
the old b). Similarly, IF A> B, THEN A
+ A - B. The process terminates when
(the contents of) B is 0, yielding the
g.c.d. in A. (Algorithm derived from Scott
2009:13; symbols and drawing style
from Tausworthe 1977).

CSUN . - oFwane
e Algorithms as Flowcharts s

INTRO
Lab 2: Guess Secret Name™—
START FLOW CHART ———— Part2 -
i’np:l_/ :

console Boolean Function

continuous
secse:_{ame Loop o
{ \‘/ 4 ("\\ TEST
input:

usgnglvugss | ear lln ag

~Correct Guess:

, Y output: >
Win flag <Ce [“Correct-Win” SET Win flag
N 4 N
input: ' STOP RETURN
or guess again? S——’

RETURN
'xl/

|\{ . ** Conditional execution (decisions)
ggod.'bvei—’r _STOP_ % Iterative execution (Loops)

Algorithm Structure

¥ DR JEFF
=0 SOFTWARE

l} EVELOP;
©2016-19 Jeff Drobman

“*Simple
d Single formula
] Select a formula from a set

s Complex
d Conditional set (IF-THEN-ELSE)
d Iterative set (loop)

(J Nested set
 Subroutines/methods

» “Programs” embed “Algorithms” (0 to N)

DR JEFF

CSUN (1) SOFTWARE
- MOSt Important Algorithms soese.

INTRO

= We will search a homonym database
**Sea rchlng that you create in Lab 5
. = We will sort characters for anagrams
- Binary in Lab 4

> List must be sorted

s*Sorting

Bubble
Iterative-Binary Search
Quick Sort

Q-Sort

Others
= 2/3 Sort (see next slide)

o000

AAAAAAAAAAAA

SSSSSSSSSSSSSSS

® N U A W N e

Algorithms in Labs

= DR JEFF
|&) SOFTWARE

INDIEAPPDEVELOPE
©2016-19 Jeff Drobman

. Hello World: Input/Output

Secret word game: compare (guess to secret)

Temp convert: formula®

. Words/pals+anagrams: check, sort algorithms*

Words/homonyms: Input database, check, search*
Primes A: textbook algorithm*

Primes B: Dr Jeff algorithm™ (compare results)

. Tic-Tac-Toe: check win, next move algorithms*

*use “methods” (subroutines)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Algorithms— Math

- DR JEFF
|82 soFTWARE

©2016-19 Jeff Drobman

s* Formulas
» Pythagorean Theorem
» Taylor Series
» Dr Jeff

s Algorithms — Historical
» Euclidean GCD

> Sieve of Eratosthenes
= Prime numbers
= Not most efficient

» Newton’s Iteration/'
» Horner’s Rule
» Calendars
» Pascal’s Triangle
= Polynomial coefficients
» Fibonacci Sequence

= Natural model
® Financial modeling

A Few Famous Algorithms from History
Euclidean Algorithm (described in Euclid’s
Elements circa 300BC, see Wikipedia article) For
finding the GCD of two integers

Sieve of Eratosthenes (276 BC - 195 BC)

For creating a table of prime numbers up to some
chosen maximum

Newton’s Iteration (Sir Isaac Newton, 1643-1727)
For estimating square roots

Horner’s Rule (William George Horner, 1786-
1837)

For quickly evaluating polynomials, especially
polynomials of large degree

DR JEFF

CSUN . . 852 soFTwaRE
sz Algorithms— Computing s
INTRO

** Donald Knuth

» Stanford Computer Science Prof.

» Books — 3 volumes
1) Fundamental algorithms
2) Searching & Sorting algorithms

COMP\18‘2 Searching & Sorting
s Sorting ***Searching (sorted list) *** Cryptography
O Linear Binary search O Encryption
O Bubble sort Indexed search = DES
O Binary sort O Hashed search ?[E)SES
O Quick sort 0 Hashing
d Qsort = Hash functions
= MD5

= SHA1

CSUN : B8 sorrware
e Algorithms— Bubble Sort e

INTRO
Bubble Sorting
First Pass Second Pass Third Pass
s f
/—\mwlu (no tmpw 1 (no swlpw 1
15|14 2|8| 1(4|(2|5]|8 1112|458
L JN\Iwepping J\3wapping o
.\ 'Y
~1|5|4|2]|8 ~{1|4|2|5|8 ~1]|2[4]|5]|8
r—\l\nppin‘ r no lmp-] (no swap
\‘,-|14528| >12458 >.12458
no swap- (MO swap-, Do swap-,
>. 1/14|2|5|8 >. 1/2|4|5|8 >1 2|14|5|8
“i1lg4|2(5]8 “il2l4]|5!8 “il2|4]5]8

CSUN : : Bl sorrware
Ze Algorithms— Prime Numbersimoe

INTRO

Sieve of Eratosthenes

*Pick a value n.

*Write out a table of the integers fro
*Cross out all entries that are multiples of 2.
*Find the smallest remaining number > 2,
which is 3.

*Cross out all entries that are multiples of 3.

*Continue until you reach the floor of the
| square root of n.i
*The numbers that remain are prime.

CSUN . . (3 Bt
~zumee Algorithms— Prime NumberSsesiia..

INTRO Old FORTRAN

T T R NNG,

nested

“DO loops” - Skip all even numbers.

Determine VT, Argument of SQRT must be real.

Check if I is divisible by any integer
up to and possibly including vT.
Number is prime; print it.

Test routine = subroutine

CSUN : B3 sorrware
Dr Jeff Algorithm sz v

INTRO lab 6 —

Dr Jeff Optimized algorithm

***Numbers =1 .. 1000 = odd only
s divisors = {P} = all found primes <= limit <= conjecture
s limit = sqrt (Number) to be proven

¢ can easily cast out 5s (...5, ...0) > so only need to start at 7

CSUN : : Bl sorrware
Ze Algorithms— Prime Numberso o

INTRO

Output: 1,2,3
Init: NUM =3 | Find all prime numbers from 1 to N

Dr Jeff Optimized algorithm

Clear P flag

CALL

TEST y
52 TEST div by
IN

easy

Y
TEST P @ Output: NUM 37

N l
Incr: NUM += 2 €¢— {P}=all found primes
odd # only <= sqrt(NUM)
N
NUM>= N? @ GOTO A

y SET P flag

CSUN : Bl sorrware
e Algorithms— Calendars e
INTRO

+* Tomohiko Sakamoto’s Algorithm % Leap years (1/4)
Algorithm, to find the day of week from any given date. % Leap centuries (1/400)

int dow(int y, int m, int d) {
static int t[) = {0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4}:
y -=m< 3;
return (y + y/4 - y/100 + y/400 + t[m=1) + d) & 7;

}

s Zeiler’s Algorithm
Zeller’s algorithm [edit)
Main article: Zeller's congruence

In Zeller’s algorithm, the months are numbered from 3 for March to 14 for February. The year is assumed to begin in March; this means, for example,
that January 1995 is to be treated as month 13 of 1994.1°] The formula for the Gregorian calendar is

e o [0 2])

¢ Basic Algorithm (0=Sat, 1=Sun, ...)
Basic method for mental calculation | edit]
This method is valid for both the Gregorian calendar and the Julian calendar. Britain and its colonies started using the Gregorian calendar on Thursday,
September 14, 1752; the previous day was Wednesday, September 2, 1752 (old style). The areas now forming the United States adopted the calendar

at different times depending on the colonial power: Spain and France had been using it since 1582, while Russia was still using the Julian calendar when
Alaska was purchased from it in 1867.

The formula is (d 4+ m Ly | 2 | 4 c\ mod 7. where: c=vear in centurv=vear mod 100 m is from table

CSUN : B sorrware
Complexity: 2/3 Sort e

INTRO

But that is still not the thing that makes it the most interesting. The most

What algorithms have the most unexpecte big,o time interesting thing is its actual time complexity. You are probably used to
com pl CXitY? algorithms where the time complexity is a smoothly growing function: the larger

the input, the longer the running time. Well, here's how the running time of this

Michal Forisek, teacher, scientist, competitive programmer particular algorithm looks like:
Updated May 11, 2014 - Upvoted by Kiran Kannar, Master's Computer Science,

University of California, San Diego (2018) and Alon Amit, CS degree and many years of 6e+07 —
coding. n2.71/ 80

b e

There is a sorting algorithm, the two-thirds sort (a.k.a. Stooge sort -), that
works as follows:

Se+07

40407
If there are at most two elements, sort them directly using at most one swap.

Otherwise:
30407

1. sort the first 2/3 of the array recursively

2. sort the last 2/3 of the array recursively 20407

3. sort the first 2/3 of the array recursively

10407

I like to use this algorithm in my lectures about time complexity, for several o =
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

reasons:

First of all, it's not immediately obvious that this algorithm actually sorts.
Can you prove that? (Hint posted as a comment.)

The plot shows the actual running time (red) and the asymptotic estimate
(magenta) as a function of input. While the asymptotic upper bound is a nice
smooth function, the actual running time is surprising: it looks like a staircase.

CSUN : B sorrware
Top 10 Algorithms sz v

INTRO

e Plagiarism detection, using Rabin Karp String matching

o String matching algorithms are pervasive in software. One particularly fun
one, is Rabin Karp, which is used in Plagiarism detection. As a student in CS
(or in any major), plagiarism detection should be of interest ;-)

o Rabin Karp is relatively easy to implement. See this: Rabin—Karp algorithm -
Wikipedia

o Rabin Karp has also inspired a string matching routine in Zlib (one of the
most popular un/zip libraries ever). See this , directly into the source code.

e Matching users to servers, using Gayle-Shapely Algorithm for Stable
Marriage problem

o This is a beautiful algorithm for fair matching. Simple, elegant and effective.
In its core form, it’s also straightforward to implement. Has numerous
applications. See: Stable marriage problem - Wikipedia
e A toyimplementation of Viterbi algorithm

o Ubiquitous in cell phone technology, and many other applications, Viterbi
algorithm is a Dynamic Programming based algorithm that finds the most
likely sequence of states.

o See this toy implementation: http://homepages.ulb.ac.be/~dgon...
e Music Search using Fast Fourier Transforms (FFT)

o Music recognition is done by converting it into frequency domain using FFT.
FFT has implementations in number of languages. See this article for a great
start: Shazam It! Music Recognition Algorithms, Fingerprinting, and
Processing

CSUN : B sorrware
Top 10 Algorithms sz v

INTRO

e Implement RSA algorithm

o SSL transport, is the bane of safe existence on Internet these days. One of the
most well-known algorithms in secure transport, is RSA, named by the first
initials of its inventors.

o Implementing RSA is fun and instructive e.g. C code to implement RSA
Algorithm(Encryption and Decryption)
e Safe Browsing (or similar) using Bloom filters

o Bloom filters found very rare usage until the world got more online and we
hit scale. But these days, we see new applications very frequently.

o Chrome browser uses Bloom filters to make preliminary decision on safe
browsing . See some novel applications here.
e Implement an LALR parser

o As a CS student, you may have already implemented it as part of your
compiler’s class. But if not, then you should. LALR parsing makes syntactic
sense of source code, whichever language you use

o Many implementations of LALR exist. e.g. Where can I find a _simple_, easy
to understand implementation of an LR(1) parser generator?

o Also, use YACC to understand LALR parsing better.
e Treemap using Red Black Trees!

o RB Trees are not algorithms, but they are famed enough, that no discussion
of tantalizing DS/Algorithms is complete without discussing them.

o The smoothest way to see/implement RB Trees, is to look at Treemap
implementation in Java.

DR JEFF

CALIFORNIA I INDIE APPDEVELOPER
STATE UNIVERSITY O p 1 O A I go r I t h I I l S ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

e Circle Drawing using Bresenham’s algorithm

o Ever wondered, how circles are drawn on the screen, with minimal
jaggedness (aliasing)? Bresenham’s elegant algorithm is at play here. See a
version here: Circle Generation Algorithm

o A refreshing use of a similar algorithm, is to make properly sized tabs in
Chrome. -~ Something we see almost every day. Such hidden gems!
e Implement PageRank
o Can’t miss this. This transformed our lives in ways we never thought
possible. Get started here: Pagerank Explained Correctly with Examples

CSUN : 84 sorrware
Al gorit hms 0201635 et raman

INTRO ~q(l']j, k) =u(i,], k) / SUM[u(n, j, k)] — i=race, j=surname, k=census block

BRILLIANT MATH
OR JUNK SCIENCE?

Federal regulators are usinggMarc Elliott’s algorithm|to crack
down on discriminatory lending. oesn't like it.

By James Rurus KOREN —1-0aumbers 0%
“My first reaction was just that it had really

Mare Elliott didn't know he'd become a play FheConsumer Finanol! Protection 23‘{:3%?’ nc;: g'e;;ymgl yem:t 1'114 mm
! _ . s
Bureau has applied Elliott’s " »
:r inthe n:ancl:lo v:no:l:‘ uexrl‘t.él he received an un- algorithm to reach settlements with gealm:?raf] l.ssues. not finance. “I hadn't been
It read simply, “Did you know you just cost several big auto lenders: And it's gone much further since then.
Ally Financial $80 million?” If you have a credit card, a car loan or almost
Until that moment nearly three years ago, &1‘ 9 mil]i on anytype of debt other than a mortgage, there’sa
the Rand Corp. statistician hadn't known an al- chance your name and address have been run
gorithm he'd devised years earlier for health- Toyota, 2016 through Elliott's algorithm, a complex formula

care research had found its way from Rand's
headquarters in Santa Monica to the halls ofa

that crunches data from the Census Bureau.
But as it has become more widely used,

powerful financial regulator in Washington, &4 million Elllott's work and the CFPB's application of it
D.C. have found their way into the middle of a fight

Or that the agency, the Consumer Financial Honda, 2015 between the federal consumer watchdog and
Protection Bureau, had used his breakthrough politicians who want to scrap the agency. Some
formula to underpin racial discrimination alle- o a congressional Republicans have gone so far as
gations against auto lending companies, start- $80 m_llllon to call the CFPB's use of Elliott's system “junk
ing with former General Motors lending arm science.”

Ally Financial, which paid $80 million to settle in Ally Financial, 2013 [See Elliott, C7)

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

RUbIk’S Cu be Algorlthm ©2016-19 Jeff Drobman

L is left side
R is right side ... See More

HOW TO SOLVE THE RUBIK'S CUBE

|

o

82 | LS

f.‘.‘
r‘

A UNIVERSAL SOLUTION

P Ommmmmm——— 349 L&] 2)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

My Math Theorem

DR JEFF

&5 soFTwaARE
INDIEAPPDEVELOPER
©2016-19 Jeff Drobman

Y m,n:

where m, n are decimal digits (0..9)

Examples:
|m-n|=1
21-12=9
32-23=9
43-34=9
54-45=9

Examples:
|m-n|=2
31-13=18
42 —24 =18
53-35=18
64 —46 =18

mn-nm| =|m-n| *9

Examples:
|m-n|=3

41 -14 =27
52-25=127
63 —-36 =27
74 - 47 =27

Examples:
|m-n|=4
51-15=36
62 —-26 =36
73-37=36
84 —-48 =36

AAAAAAAAAAAA
STATE UNIVERSITY

My Other Math Theorem

DR JEFF

&5 soFTwaARE
INDIEAPPDEVELOPER
©2016-19 Jeff Drobman

square of any integer that ends in 5:
form of n52 =n(n+1) 25

Y n: ((n*10) + 5)2 = n(n+1)*100 + 25

where n is any decimal integer

Examples:
n=2
252=625
n=3
352=1225
n=4
452=2025
n=>5
552=3025

CSUN : Bl sorrware
Al gorit hms 0201635 et raman
INTRO Computer
Science

Cryptograpny

» See separate slide set

CSUN

ALIFORNI
TATE Nl\ER lT\

INTRO

DR JEFF

|%i SOFTWARE

Cryptography

**Encryption

Coooo0oo

Used to secure data in storage & transit
Many standards (DES, 3DES, etc.)
algorithms use sequence of XOR operations
use public-private key pairs

replaces each character in situ with a code
data retains same length

does not detect tampering

**Hashing

U O

CO0DO00O0

Used to secure data in storage (only)

A few standards (MD, SHA)

algorithms use complex sequence of math operations with key
use private keys derived from random issued words

does not replace data

adds a “hash” value to each block of data

hash value is a fixed 160 bits for SHA

detects tampering (raison d’etre)

DR JEFF

CSUN

. : SOFTWARE
CALIFORNIA INDIEAPPDEVELOPER
STATE UNIVERSITY D E S E n C ry pt I O n ©2016-19 Jeff Drobman
NORTHRIDGE
INTRO
) Message broken into 64-bit €) For each 64-bit block €) The block is split into two 32-bit blocks.
I
ocanc A cen oy [010001010101... |
\ | 11101100001... | XOR
-
. | 11101011001... | [010001010101... |
: XOR) The 32-bit value is
Message = expanded to 48 bits and
I 01101010111 I O XOR'd with the key for this
round.
0 The XOR'd value is split into
8-, 6-bit blocks and run
through the eight S-boxes
0 Sixteen 48-bit keys are 51 52| --- (Substitution boxes).

generated from the
64-bit shared key.

Iy d

| 010111000100... |

0 The permuted blocks are
recombined.

111010010110...

Sub key 16 XOR €) The scrambled 32-bit value
: 4 is XOR'd with the other
| 1011011110101... | | 010001010101... | 32-bit block.
0 After 16 rounds we have 0 The 32-bit blocks are
the scrambled 64-bit value N switched for the next
(the cipher text). round, go back to Step 4.

Cipher
FIGURE 16.10 High-level illustration of the DES cipher

Algorithms + Keys

CSUN : B sorrware
SHA Hashing et

INTRO

Secure Hash Algorithm

Concepts
hash functions * SHA - DSA
Main standards
SHA-0 - SHA-1 - SHA-2 - SHA-3

SHA-1

From Wikipedia, the free encyclopedia

In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function which takes an input and
produces a 160-bit (20-byte) hash value known as a message digest - typically rendered as a hexadecimal
number, 40 digits long. It was designed by the United States National Security Agency, and is a U.S. Federal
Information Processing Standard.!

Since 2005 SHA-1 has not been considered secure against well-funded opponents,!* and since 2010 many
organizations have recommended its replacement by SHA-2 or SHA-3.551617] Microsoft, Google, Apple and Mozilla

have all announced that their respective browsers will stop accepting SHA-1 SSL certificates by
201 7.[8lsN10](11])[12](13]

In 2017 CWI Amsterdam and Google announced they had performed a collision attack against SHA-1, publishing
two dissimilar PDF files which produced the same SHA-1 hash.[14l[15][16]

CSUN : B sorrware
SHA Hashing et

INTRO
SHA-1
A B (D E
General [[
Designers National Security Agency WL*#
First 1993 (SHA-0), F
published 1995 (SHA-1)
Series (SHA-0), SHA-1, SHA-2, SHA-3 === \\
Certification FIPS PUB 180-4, CRYPTREC d W
(Monitored) t
<<<“
Cipher detail K
t
Digest sizes 160 bits
Block sizes 512 bits
Structure Merkle-Damgard construction
A B (D E
' Rounds 80
One iteration within the SHA-1 compression &l

function:

A, B, C, D and E are 32-bit words of the state;
Fis a nonlinear function that varies;

<&, denotes a left bit rotation by n places;

n varies for each operation;

W, is the expanded message word of round t;
K is the round constant of round t;

FH denotes addition modulo 232,

DR JEFF

CSUN . 25| soFTwARE
CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSITY S H A H a S h I n g ©2016-19 Jeff Drobman
NORTHRIDGE

Comparison of SHA functions
Capacity Performance on
Max against Skylake (r;edlan
Output Internal | Block message Security length cpb)(*7!
Algorithm and size state size | size size bits extension long First
variant (bits) (bits) (bits) (bits) Rounds Operations (Info) attacks | messages 8 bytes | Published
MDS5 (as reference) 128 128 512 | Unlimited®® 64 And, Xor, Rot, <64 4.99 55.00 1992
(4 x 32) Add (mod 2%2), | (collisions 0
Or found)
SHA-0 160 160 512 284 -1 80 | And, Xor, Rot, <34 ~SHA-1 | =SHA-1 1993
(5x32) Add (mod 2%2), © (collisions
Or found) 0
SHA-1 <63 3.47 52.00 1995
(collisions
found(5¢])
SHA-2 SHA-224 224 256 512 264 _ 1 64 And, Xor, Rot, 112 a0 7.62 84.50 2004
SHA-256 256 (8 x 32) Add (mod 232), 128 0 7.63 85.25 2001
Or, Shr
SHA-384 384 512 1024 2128 _ 1 80 And, Xor, Rot, 192 128 (s 384) 5.12 135.75
SHA-512 512 (8 x 64) Add (mod 2%%), 256 0 5.06 135.50
SHA-512/224| 224 Or, Shr 112 288 | ~SHA-384 =~ SHA-384
SHA-512/256 256 128 256
SHA-3 SHA3-224 224 1600 1152 | Unlimited®® | 24[61) | And, Xor, Rot, 112 448 8.12 154.25 2015
SHA3-256 256 (5x5x64) 1088 Not 128 512 8.59 155.50
SHA3-384 384 832 192 768 11.06 164.00
SHA3-512 512 576 256 1024 15.88 164.00
SHAKE128 | d (arbitrary) 1344 min(d/2, 128) 256 7.08 155.25

SHAKE256 | d (arbitrary) 1088 min(d/2, 256) 512 8.59 155.50

CSUN B sorrware
Software et
INTRO Computer
Science

Theory

&' DR JEFF
CSUN SOFTWARE
CALIFORNIA I INDIE APPDEVELOPER
STATE UNIVERSITY h e O ry ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

Halting problem

From Wikipedia, the free encyclopedia

In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program
will finish running or continue to run forever.

Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist. A key part of the proof was a
mathematical definition of a computer and program, which became known as a Turing machine; the halting problem is undecidable over Turing machines. It is one of
the first examples of a decision problem.

Informally, for any program fthat might determine if programs halt, a "pathological" program g called with an input can pass its own source and its input to fand then
specifically do the opposite of what f predicts g will do. No fcan exist that handles this case.

Unfortunately, Turing proved that such a program can’t exist, which means we

can’t just fire all the math professors. His proof is a proof by contradiction: he
assumes you could create such a program, and shows that this leads to a result
that is “absurd”/”obviously false”.

In particular, he says, if you wrote such a program, you could write a new

program that uses it:
Java
my program:

if ("my program" halts) while (true) {

run forever

W N -

4 otherwise

: halt System.exit(0);

In other words, ‘my program’ will run forever if that halting program says that it
halts, and it will halt if the halting program says it will run forever — no matter
what the halting program says, it has to be wrong!

(@rsm) DR JEFF
CSUN | lSOFTWARE
CALIFORNIA I INDIE APPDEVELOPER
STATE UNIVERSITY h e O ry ©2016-19 Jeff Drobman
NORTHRIDGE
I|

INTRO

|
NP-Herd / ‘ NP-Herd ’

{_ NP-Complete

NP-completeness

From Wikipedia, the free encyclopedia
(Redirected from NP complete)

P=NP=
NP-Complete

P= NP

Euler diagram for P, NP, NP-complete, and NP-hard &7
N Ot P rova b I e ? set of problems. The left side is valid under the
assumption that P#NP, while the right side is valid
under the assumption that P=NP (except that the empty
language and its complement are never NP-complete)

In computational complexity theory, an NP-complete decision problem is one belonging to both the NP and the
NP-hard complexity classes. In this context, NP stands for "nondeterministic polynomial time". The set of NP-
complete problems is often denoted by NP-C or NPC.

Although any given solution to an NP-complete problem can be verified quickly (in polynomial time), there is no
known efficient way to locate a solution in the first place; indeed, the most notable characteristic of NP-complete
problems is that no fast solution to them is known. That is, the time required to solve the problem using any
currently known algorithm increases very quickly as the size of the problem grows. As a consequence,
determining whether it is possible to solve these problems quickly, called the P versus NP problem, is one of the
principal unsolved problems in computer science today.

While a method for computing the solutions to NP-complete problems using a reasonable amount of time
remains undiscovered, computer scientists and programmers still frequently encounter NP-complete problems.
NP-complete problems are often addressed by using heuristic methods and approximation algorithms.

@ DR JEFF
Igl SOFTWARE
AAAAAAAAAA INDIEAPPDEVELOPER
smazh v SOftwa re ©2016-18 Jeff Drobman

Code Structure

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Documentation

aFe DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

Documentation — COMMENTS

d Maintainability
(d Code (conditional use)

** IN line
foo xxx foo ‘comments (VB)
foo //comments (JS, others)

¢ Beginning of line
‘comment line (VB)
//comment line (JS, others)

< Multi line

/* comments line 1
comments line 2
comments line 3 */

CSUN . (5 B
Comments In Java et i

INTRO

// This is an example of a single line comment using two slashes

/* This is an example of a multiple line comment using the slash and asterisk.
This type of comment can be used to hold a lot of information or deactivate
code, but it is very important to remember to close the comment. */

package fibsandlies;
import java.util.HashMap;

VAL
* This is an example of a Javadoc comment; Javadoc can compile documentation
* from this text. Javadoc comments must immediately precede the class, method, or field being documented.
*/

CSUN B8 sorrware
e Software = Code + Data emesiioom,

s All applications projects integrate both CODE and DATA
** CODE manages the DATA
** CODE is combined into a single file (.exe, .class)

“* DATA can be I/O or a stored collection, in any format:

» 1/0 (console, GUI) — not stored
» Set of simple files:

<> CSV as .txt or other (.drj)
» Formal DBMS (SQL)

DR JEFF

CSUN @SOFTWARE
Software 201615 i brobman
INTRO
**Control **Data
d Control Flow] Data Flow
» Confined to structures " Input
d Control structures = Output
> Subroutines/Methods (1 Data structures
> |IF-THEN-ELSE m Files
» LOOPS = Arrays
= FOR (iteration) = Structures
" WHILE = Databases

. DO-WHILE

DR JEFF

CSUN SOFTWARE
~u-Software Structure-Code/ Da@wﬁ’féﬁ%ﬁfﬂi

INTRO

ETRI et toms Acerss)+ [N

v
sd{t e that retes N . 12733 Parkyns St Los Angeles
atabase that retrieves all entities name "Entity." .
t *request = [NSFetchRequest fetchRequestwithEnti{yName 2586 Northlake Cir Westlake Vb
21628 Wo He Lo Trail Chatsworth

ed object context.
venience for alloc] init].
ctContext *managedObjectContext = [NSManagedObjectConte

5560 Oak Park Ln #307 QOak Park
14530 Magnolia Bivd #7 Sherman Oaks

tent store coordinator to the managed object context.

tContext setPersistentStoreCoordinator:self.persistents & Elie Daher 1562 N Courtney Ave HO“VWOM
s an error object. 1628 N Courtney Ave Hollywood

' &Claude 104 S Young Rd Payson
and fetch the results.
cts = [managedObjectContext executeFetchRequest:request 7826 Winnetka Ave Canoga Park
ith the results. & Michael 4725 Burgundy Rd Woodland Hills
pet count: &Daniel 1891 Mandeville Cyn Rd Los les

OO DO ON OO0

)l DR JEFF
| SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

CSUN

CALIFORNIA
STATE UNIVERSITY

NORTHRIDGE

Software Structure-Data

INTRO
* and.. vy B0 GGG s Clity (Home...
< 12733 Parkyns St Los Angeles
< 2586 Northlake Cir Westlake Vig
< 21629 Wo He Lo Trail Chatsworth
< 5560 Oak Park Ln #307 Oak Park
< 14330 Magnolia Bivd #7 Sherman Oaks
C & Elie Daher 1562 N Courtney Ave Hollywood
< 1628 N Courtney Ave Hollywood
C &Claude 104 S Young Rd Payson
< 7826 Winnetka Ave Canoca Park
T & Michael ills
DATA STRUCTURE
| S|mp|e data files Entity Description Entity Description
1 Data models Name: “Employee” Name: “Department”
Class Name “Employee” Class Name “Department”
¢ Apple Core Data amay |

Properties:

Properties:

 RDBMS

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Software Structure-Code

)\ DR JEFF
SOFTWARE

INDIE APPDEVELOPER
©2016-19 Jeff Drobman

s {
database that retrieves all entities name "Entity."
t *request = [NSFetchRequest fetchRequestWithEntityName

ed object context.
venience for alloc] init].
ctContext *managedObjectContext = [NSManagedObjectConte

tent store coordinator to the managed object context.
tContext setPersistentStoreCoordinator:self.persistents

s an error object.
r;

and fetch the results.
cts = [managedObjectContext executeFetchRequest:request

ith the res
ect count:

Function

Memory
Mgt

———

| | Object) | | Declares
Includes Sub 1] Declare 1 Search 1] Data files] [arrays]
| | Object Structured | | Localvs.
Declares Sub 2] Declare 2 Sort 1] Database] Global
Inits - Object — malloc
Handler 1
|| Object
Handler 2

DR JEFF

: i) SOFTWARE
sume Code Structure-Sections — smessivan
INTRO
BOOK PROGRAM
includes
JForward (d Declarations
JPreface

dIntroduction

A Chapters

(1 Conclusion
dIndex

Read sequentially

WInitialization

1Blocks

= (Classes

= Procedures
= functions
= Fvent Handlers
= Fjle Handlers
= //O Handlers
= Error Handlers

dDocumentation

Executed NON-sequentially
(by thread of control -- “behavior”)

CSUN 2 sorrware
Code Structure-C o1 e

INTRO

/* C program */
#include <stdio.h> //standard C |/O library

void main ()

{
// inits
Int a,b

/* C program
Goes here */

printf (“Hello”\n) //print to std output (console)
scanf(“%d%d”, &a,&b) //input from keyboard

}

CSUN B soFrware
Code Structure-Java o015 o

INTRO

/* Java program */
import javax.swing.*; //standard Java library
// "system” does not need to be imported

public class helloWorld {
public static void main (String[] args) {
system.out.println (“Hello world!”);

}
}

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

Other Languages

Pe DR JEFF
B2 soFTwARE

©2016-19 Jeff Drobman

L

[
< O
o9)

CSUN i~y ‘|SgII:T~{1$Z;E
e Code Structure-Main (VB) ewssisn

INTRO
Imports System.l0 ‘to Read/Write Files / L SETUP J

Imports System.Drawing.Printing ‘to use a Printer

Public Class Form1
Inherits System.Windows.Forms.Form ‘to use a “Window”

< Declarations > / MAIN J

Private Sub Form1_Load(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load

< Initialization code >

End Sub

< MODEL code>

< CONTROLLER code>

End Class

CSUN

STATE UNIVERSITY

INTRO

DR JEFF

@) sor rware
zmme Code Structure-Subs (VB) oo

< statements >
End Sub

Private Sub limra(ByRef dd As Int16, ByVal x As Byte)

Private Sub abs(ByRef dd As Int16)
< statements >
End Sub

Private Function padO(ByVal dd)
< statements >

Return (dd)
End Function

Private Sub caller()
Call abs(x)
Call pad0(n)
Call limra(z,m)
End Sub

s Call
s Parameter passing
» By Value
» By Reference
**Return

> Sub -> void
» Function -> value

CSUN

STATE UNIVERSITY

DR JEFF

&) soFTWARE

i Subroutines in VB

INTRO

< statements >
End Sub

Private Sub limra(ByRef dd As Int16, ByVal x As Byte)

Private Sub abs(ByRef dd As Int16)
< statements >
End Sub

Private Function padO(ByVal dd)
< statements >

Return (dd)
End Function

Private Sub caller()
Call abs(x)
Call pad0(n)
Call limra(z,m)
End Sub

s Call
s Parameter passing
» By Value
» By Reference
**Return

> Sub -> void
» Function -> value

DR JEFF

CSUN . . 252 soFTwARE
Subroutines in C
INTRO
void limra(dd, ff) {
|nt d b' ."T
/0y emplate
< statements > S LEIROIIINE : P
} s Call
s Parameter passing
int limfn(dd, f) { > By Value
int a,b; » By Reference
< statements > FUNCTION ** Return
Return (a); > Sub -> void
} » Function -> value

void main() {
int a,b,c;
limra(a,b);
x = limfn(b,c);

MAIN PROGRAM
Calls subs

DR JEFF

CSUN . 22| soFTwaRE
CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSITY Me th Ods I n J ava ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

public static void limra(dd, ff) |{

int a,b; o2 T

emplate

< statements > SUBROUTINE : P

} s Call
* Parameter passing

public static int limfn(dd, ff) { > By Value

int a,b; » By Reference

< statements > FUNCTION s Return

Return (3); » Sub -> void
J » Function -> value

public static void main(String|], args) {

int a,b,c;
limra(a,b); MAIN PROGRAM
x = limfn(b,c); Calls subs

CSUN . : : : B sorrware
e Compiler Directives in C soesian

INTRO

“*INCLUDE

#include <stdio.h>
#include <p18f4321.h>

** MACRO (compare to EQU vs. subroutines)
#define portcO PORTCbits.RCO

** PRAGMA (compare to ORG)
¢ #pragma code begin
¢ #fpragma code int_vect = 0x0000008

e Actual Code-Visual Basic —ewsswizom,
INTRO VB —

Imports System.lO
Imports System.Drawing.Printing S ETU P
Public Class Form1
Inherits System.Windows.Forms.Form
"**system constants
Public Version As String = "Version x.x”
Dim DataVer As String 'ver # in file
Dim copyr As String = "Copyright(c) 2009-14”
"**system switches
Dim DEMO As Boolean = False, REL As Boolean = False 'EDIT for Release/debug
Dim DEBUG As Boolean = False
"**screen X,Y positions
Dim cprtX As Int16 = 488, cprtY As Int16 = 444, demoX As Int16 = 344, demoY As Int16 =0
Dim verX As Int16 =177, verY As Int16 = 0, DverX As Int16 = 177, DverY As Int16 = 16
"**standard vars
Dimi,j, k, I, m, n As Byte
Dimu,v,w, X, Y, zAs Intl6
Dim ss, tt, uu, vv, ww, xx, yy, zz As Single
Dim wstr, xstr, ystr, zstr, xxstr, alertst, srchstr, matchstr As String
Dim vobj, wobj, xobj, yobj, zobj As Object
Dim errl As Boolean = False, err2 As Boolean = False
**file
Dim OpenFileDialog As FileDialog
Dim streamxx As StreamReader
Dim file_root As String = "C:\Users\Jeff\Documents\Jeff's files\Drleff Software\Word World\

CSUN . . IMUSSETﬁz;E
e Actual Code-Visual Basic = wmeson
INTRO VB —
'"**LOAD Files .
[ORDEEnit — LOAD DATA
Private Sub loadF(ByVal fnam As String)
Try
FileOpen(1, fnam, OpenMode.Input)
Catch ex As Exception
filerr("error opening data file in <loadF> - " & ex.Message)
End Try
End Sub
'"*Load User data

Private Sub loadU(ByVal fnam As String)
loadhead(fnam, "User")

If cc Then loadfav() Else favlen=0: filerr("Favorites not loaded")
loadchex() : ccx = cc: If Not cc Then filerr("Checks not loaded")
loadpat() : If Not cc Then plen=0: filerr("Channel patches not loaded")

FileClose(1)

If Not ccx Then 'use default chex
For i =0 To catmax
k = genlen(i) : k = limraO(k, gmax)
Forj=0To k
chex(i, j) =1 : Next : Next
End If
End Sub

e Actual Code-Visual Basic — ewesiiom,
INTRO VB

Private Sub SavBtn_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles SavBtn.Click
cc =True

If favlen < 1 Then actok("Saving Empty Favorites”) U | —_ U ser Eve Nnts

If cc Then savall(LoadfilexU)
End Sub

"**Box handlers
Private Sub chg_box(ByVal ar() As String, ByVal In As Int16, ByRef obj As System.Object)
Dim ii As Int16
obj.ltems.Clear()
If In <=0 Then Return
' dialert("len=" & CStr(len))
Try
Forii=0ToIn-1
xstr = ar(ii) '& "**”
' dialert(xstr)
If xstr ="" Then xstr = "<blank>"
If obj Is ListBox3 Then
wordwrap(ListBox3, xstr, 21)

Else
obj.ltems.Add(xstr)
End If
Next
Catch ex As Exception
Palert("error in <chg_box>" & " -" & ex.Message)
End Try
End Sub

CSUN B8 sorrware
e Actual Code-Visual Basic — wessiown

INTRO VB —

FUNCTION LIBRARY

'**SEARCH/SORT
'**search
Private Function searchlist(ByRef listx As Object, ByVal xx As String, ByVal In As Byte)
"*find index of xx in sorted list
Private Function search1D(ByVal ar(), ByVal In, ByVal xs)
Private Function srchcond(ByRef ss) ‘process search text; set cond2
End Function

'**sort
Private Sub sortadd(ByRef nam() As String, ByRef box As Object, ByVal In As Byte)
"*bubble Dn last in sorted list, nam(0:In); gen xar()

Private Sub sortlist(ByRef listx As Object, ByVal ar() As String, ByVal In As Byte)
'*gen index array 'xar' fm sorted list

Private Sub sortarr(ByRef ar() As String, ByVal In As Byte)
'"*sort array via 'xar' —str
End Sub

CSUN . . = sg_lETJ\g:(;EE
Code Guidelines ca v

INTRO

“*Scope
» Local — best to use — Private
» Global — be very careful — Public

s Type casting
» Use explicit types (avoid implicit casting & overloading)

**Procedure parameter passing

» Use “By Value” for variables
» Use “By Reference” for objects

*»*Condition codes

» Set “CC” binary var (T/F) on action completion
» Test “CC” before continuing with next action

s*Error trapping & handling

» TRY & CATCH blocks — use generously

» Catch exception descriptions

» Add as much pertinent info as possible (esp. location)

» Report via “alert boxes”

» Never allow un-trapped errors — they cause program interruption
(that is what “beta testing” is for)

DR JEFF

CSUN @SOFTWARE
Tradeoffs 6201615 e romr
INTRO
s*Memory **Performance (Speed)
(J Code (KB-MB) 1 Total execution time (sec)
o Static o Small tasks (compute only)
o Lines of code VS o Big simulations (e.g., weather)
o Verbosity o Verbosity
] Data (MB-GB-TB) (J User response (msec)
o Small files (CSV) o Clicks
o Databases (SQL) o Text characters
o Big data (data mining) o Forms

J Embedded control (msec)
o Real-time response
o Interrupts

CSUN : : : B soFrware
e Object Oriented Design s

INTRO g

#Encapsulation » major properties of OOP

(1 Objects Class Foo N % Declare class Foo
<~ Classes as models <decl vars (init)> | 2 peclare vars
O Classes E:; *? Define methods
<> Properties <code> “ Add code
<> Constructors End Class
<> Methods .
.] Foo Fee *»* Fee Instantiates Foo
*Inheritance Fn 3 % Fee Inherits Foo
d Class Instantiations <other code> | 4 Fee Adds code to Foo
End Class polymorphism

**Polymorphism
 Multiple Instantiations

<> Small changes to Methods or code

@ DR JEFF
ﬂ SOFTWARE
CALIFORNIA INDIEAPPDEVELOPER
AT OIS SOftwa e ©2016-19 Jeff Drobman

INTRO

Design Patterns

DR JEFF

CSUN . 25 soFTWARE
Design Patterns: MVC oo

INTRO

z

MODEL ¢ Microsoft
(‘w » Visual Studio

UPDATES MANIPULATES

| | <> Design View
<> Code Behind

*Apple
% & > Xcode

<~ Storyboard
<~ Code

VIEW CONTROLLER

A typical collaboration of the &J
MVC components

| View Controller - A controller that
‘ ‘ supports the fundamental view-
=== management model in iOS.

< Navigation Controller - A

controller that manages navigation
through a hierarchy of views.
Item 2

‘ |\ Table View Controller - A
controller that manages a table view.

SEARCH

“ Tab Bar Controller - A controller
that manages a set of view controllers
—— that represent tab bar items.]

Split View Controller - A
‘ ‘ composite view controller that ™ m -
=557 manages left and right view controll...

Santa Clara
| Page View Controller - Presents a

‘ . sequence of view controllers as
= pages.

.)y DR JEFF
CSUN 25| soFTwARE
CALIFORNIA (INDIE APPDEVELOPER
STATE UNIVERSITY IVI V ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

*** Model
O Application function set

*View
O Design — what user sees

s* Controller
 Event handlers (user actions)

Controllers are almost always that data source (not

® M4 <« P > »

@ DR JEFF
B soFrware
AAAAAAAAAA INDIEAPPDEVELOPER
gy oaivEadier Software 0201619 it Drobmar

Welo
Applications

CSUN (5] 58%225
e \Web Apps vs. Web Design’ sz

INTRO
Web Apps Web Ul
< WHAT **HOW IT LOOKS p— f
O Functions Appearance
 Features O Features
[Benefits 1 Benefits
** Implement » Design
 Code Structure O Site Structure
O Programming Languages O Page layout
d Coding (programming) O Styles
O Visual elements
<> Photos
<~ Videos

<> Audio/sound

CSUN : B3 sorrware
Client-Server Model eoesiivan

INTRO

Client-Server Model

The Web is also
communications
of actors in the

CLIENT DEVICES

WiFi/cellular
data services

/ =)

DR JEFF

CSUN . . &2/ soFTwaRE
Client Devices s v
INTRO

* Phones RESPONSIVE/ADAPTIVE LAYOUTS
 iPhone (Apple iOS)
L Android (Samsung, HTC, Motorola—> Google)

d Windows (Nokia, Microsoft?)
O Blackberry (ex-RIM, dying)

» Tablets
O iPad (Apple iOS)
1 Android (Samsung, Google Chromebook)
O Amazon (Kindle, Fire)

RUN BROWSERS

¢ Hybrids (optional keyboard, stylus)
L Microsoft Surface
O Apple iPad Pro (iOS)
“*PCs
O Windows PCs (HP, Dell, Toshiba, et al.)
1 Mac (Apple Mac Pro, MacBook)

DR JEFF

CSUN oy SOFTWARE

CALIFORNIA S I
STATE UNIVERSITY e rve r y p e S ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

Client-Server Model

Most real-world Web sites are are served by many servers. It is common to split the functionality of a Web site between
several different types of server.

Click each image to know more.

Source: Connolly, R., & Hoar, R. (2015). - 3
Fundamentals of web development (1st ed.). ;
e el i

CSUN . == sg_gTJ\;:(;EE
LAMP Overview et i

Design of Web Apps
LAMP = Linux + Apache + MySQL + PHP

f > S - Linux Server
PHP/Perl scripts
MySOL Datahase

Dynamic Web Pages

Apache Weh Server

DR JEFF

CSUN &) soFTwARE
TAT“!\ELL“;\H\}/{ENIIIAIT\ We b A p pS ©2016- 19 Jeff Drobman
INTRO
**0S
O Linux (Ubuntu, Fedora)
d Windows
. o LAMP = Linux + Apache + MySQL + PHP
** Application server
1 Apache
1 Windows IIS **Databases
: 0 MysQL
s Websites
* Q MS sQL Server
O Pages (markup) O Others
= HIML = QOracle
" 05 = SAP
[Applications (functional) . Teradata
= PHP
= Perl
= Python
= Java
= Javascript (J2EE, JSON)
= Ruby

= ASP.NET

DR JEFF

CSUN 25| soFTwARE
CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSITY We b A p p La ye rS ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO " server-side LAMP —
LAMP = Linux + Apache + MySQL + PHP
Full Stack
New page with HTML
+ Client-side scripts PH P/PerI/Python) qﬁSiI;s
< Java
< Javascript \
Svar=value
TO USER \v FROM USER
IP packet el IP packet
packe
NEW PAGE (HTML) <: pache @ ?GET Svar=value

Linux

CGlin HTTP

https://www.facebook.com/jeff.drobman/posts/10207546329763616?notif_t=like
https://www.facebook.com/seadebido/posts/10208511988945552?notif _t=close_friend_activity

https://portal.itt-tech.edu/shared/library/Pages/School OfIT.aspx
https://en.wikipedia.org/wiki/Common_Gateway_Interface

http://www.amazon.com/gp/goldbox?ie=UTF8&ref =br_isw_strs-2
https://secure.bankofamerica.com/myaccounts/signin/signin.go?returnSitelndicator=GAIMW&langPref=en-
us&request_locale=en-us&capturemode=N&newuser=false&bclIP=F

CSUN B sorrware
Web Server Software s

INTRO

Top 60 million sites Top 10,000 sites

Others, 3%
Varnish, 1%

Apache, 37%

Others, 12%

Varnish, 5%
nginx, 15% -

nginx, 15%

IS, 23% -

Apache, 66%

1S, 31%

FIGURE 19.11 Web server popularity (data courtesy of Builtwith.com)

s* Apache
** Microsoft IS

% DR JEFF
SOFTWARE

INDIE APPDEVELOPER

©2016-19 Jeff Drobman

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Web Languages

INTRO
s Spoken Languages
81.7%
ASP.NET English 53.7%
. Russian
[+)

Java M 3.0% SERVER Side o
static files 0 1.6% Japanese
ColdFusion 10.7% Usage of server-side programming languages Spanish

for websites French

Ruby]10.6% e Lasso Portuguese

e Scala
Perl J0.5% |, Lus Italian
Chi

JavaScript] 0.2% * Tcl nese

e Smalltalk Polish

Python] 0.2% o C++ Turkish
Erlang | 0.1% : :25'«3” Dutch, Flemish J11.4%
P Persian J11.1%
Miva Script |0.1% * Ada Arabic 10.8%
W3Techs.com, 21 Czech 10.8%
CLIENT S|de Korean J0.7%

Vietnamese]0.6%
Swedish 10.5%

Indonesian]0.5%

JavaScript 92.7% Greek]0.5%
Romanian]0.4%

FIaSh Hungarian]0.4%
Silverlight | 0.1% Danish f0.3%

Thai]10.3%
Slovak]0.3%

W3Techs.com, S February 2016

Percentages of websites using various client-side programming languages
Note: a website may use more than one client-side programming language

Finnish]0.2%

Bulgarian]0.2%

7@ DR JEFF
CSUN 25| soFTwARE
CALIFORNIA INDIE APPDEVELOPER
STATE UNIVERSITY P H P ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO
<?php
$user = "Randy"; **Hybrid web language
?TDOCTYPE o 3 Markup (tags)
<! ml> C L
sy O Application (OOP)
<body>
<hl>Welcome <?php echo $user; ?></hl>
<p>
The server time is
<?php
echo ""; <!DOCTYPE html>
echo date("H:1:s8"); <html>
echo ""; <body>
o <h1l>Welcome Randy</hl>
</p> <p>
</body> The server time 1is 02:59:09
</html> </p>

</body>
LISTING 8.1 PHP tags </htm1>

LISTING 8.2 Listing 8.1 in the browser

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

gran DR JEFF
SOFTWARE

Web Language Variants s

LAMP Stack:
-PHP and MySQL
-OOP with PHP

-MVC with PHP (Codelgniter)

-Cloud Server Management
-Basic JavaScript
-Ajax in PHP

MEAN Stack:
Advanced JavaScript
MongoDB

Express

AngularJS

Node.js

Socket.lO

Redis

Ruby on Rails:

-HAML, SASS, CoffeeScript
-Ajax in Rails

-Rails + Node.js

-Test Driven Development
-Heroku

For learning? Learn all the cool stuff.

1. Ruby's Rails, Sinatra, Cramp and Volt.
Python's Django and Flask.

Node's Express, Meteor and Sails.

PHP's Laravel, CakePHP, Yii and Simfony etc.
Java's Spring and Play.

Scala's Play and Lift.

Go's Beego.

N ook

All of these companies (and many more not listed, like Intel, HP and IBM) have
published either extensive reports or blog articles on how they evaluated all the
technology out there and switched to Node for either their flagship products or their
new products...

Walmart eb \Y/ PayPal
DOW JONES In'i'UI'i' NETFLIX

B® Microsoft

Linked m Ehe New QJork Times
user YAHOO! Kingfysher

CSUN : Bl sorrware
Web File Types (MIME) coesioan

INTRO

s*.html (or .htm) — primary markup language
%+ .css — CSS stylesheet file

»».php — PHP programming language code

’2{ .Jjava - Java interpreted programming language code

**.js — Javascript scripting language code
¢ .pl — Perl programming language code

s .aspx — Microsoft .NET programming language (Active Server Pages)

ﬁ
MIME (multipurpose Internet mail extensions) types are identifiers first
created for use with email attachments.1? They consist of two parts, a type and a

subtype, which together define what kind of file an attachment is. These identi-
fiers are used throughout the web, and in file output, upload, and transmission.

CSUN . - B
e \Web Design for Mobile s

INTRO

All about SCREEN SIZE and FORMAT
s+ ADAPTIVE

O Size \
= Tablet R SR
O Orientation PRODUCTS - (»w - ' T M
. OMm33s=s > DO
= Portrait < OF RS
= Landscape - APPS 5 2 g > 3 % 8 :
=D 2
. Win PC Apps (.NET) | A s&s U = 2
e B MAC Apps (OS X) M > R2 o :
¢ > / b P B
m SOFTWARE 0 eroouers st . ;Z’g’f‘f”"ad Apps U a " L7{3
INDIEAPPDEVELOPER ‘ I
‘ SERVICES B ————— ’
\
. Custom
PRODUCTS -- APPS) ¢ Apple Xcode
Win PC Apps (NET) N E O Built-in coding for re-sizing
MAC Apps (0S X) = Phone
iPhone/iPad Apps (iOS) - Ta b | et
SERVICES L Orientation .
Custom App Development - A.utomatlc .
Website Building & Rental . Slmulator dISplayS bOth
Expert Witness Consulting
Technical Support

CSUN B3 soFrware

CALIFORNIA : INDIE APPDEVELOPER
STATE UNIVERSITY e e S I g l I O O S e S ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO

S Word worapress INOT COVERED IN THIS COURSE
¢ Or press To: Jeff Drobman

[Dr Jeff Software] Your site has updated to WordPress 4.4.1

< Blog style
<~ Templates

Howdy! Your site at hitp://www.pagerentals.me has been updated automatically to WordPress 4.4.1.

< Plug-ins You also have some plugins or themes with updates available. Update them now:

N http//www.pagerentals.me/wp-admin/
** Weebly
<> Drag & drop
. WiX com Web com
** Wix ’

Create Your Own Beautiful Welbsite

Your stunning website is just a few clicks away. It's easy and free with Wix. WI X CO nf‘\

100s of Templates Get Your Own Domain Easy Drag n’ Drop Mobile Optimized m
/
** Squarespace
<> Pre-fab — Templates @ network

Host

™

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

@% DR JEFF
Q SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Website Builders

INTRO

30 Years of Experience

Web.com

WiX com

weebly;

Enhanced Build it For Me options

Rate it! (5552)
v Website built free - no upfront charges
v Templates: 100+

Top-notch professional designs

Rate it! (2757)
v Completely FREE & customizable plan
v Templates: 500+

Intuitive drag and drop builder

Rate it! (1915)

v Anytime money-back guarantee

9.5
Web.com

Review $1.95-$3.95»

9.5

. Visit Site »
Wix

Review $4.08-$24.92 »

9.1

Weebly

Visit Site »

Review .
v Templates: 100+ $8.00-$25.00 »

& TOP1IOBEST
WEBSITE BUILDERS

Home > How to create a website > Business > Wix vs squarespace which is best for you

Wix vs. Weebly vs. Squarespace: The Choice is Yours

December 23, 2015 / By Top10 Staff

CSUN : B sorrware
Web Hosts-Domains e

INTRO

o~ Google
Sponsored - @&

49.7%

Everything you need to look great online! Start tode

’ rofessional email and custom website.
“*Yahoo et U N5.1%

. .het 4.7%
**Google
**GoDaddy ip W2.1%

<+ iPage 1 Page o bro

.org M 4.4%
Google Domains de W3.1% TLDs

. .pl B1.5%
** BlueHost in §11.3%
Jt N1.3%

**SquareSpace fr B1.2%
au J§11.1%

.nfo J§1.1%

.nl 11.0%
.cn 10.9%
Ar 10.8%
.es 10.7%
.cZ J0.6%
.biz 10.6%

kr 10.6%

CSUN ”
< Web Components/Browser

INTRO

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

©2016-19 Jeff Drobman

Can | use web components ?

4 results found

Custom Elements (V1) & -5

Usage % of all users s 7
Global 73.69% + 15.24% = 88.93%
Method of defining new HTML tags.
Usage relative Date relative Apply filters m ?
13 Edge Firetox Satan Opera iOSSafari OperaMini” pndoid = Blackberry oo, yopg Cfomelor Frefoxfor e vobile YC Browser

Sams:

Interr

co

o |

@ DR JEFF
ﬂ SOFTWARE
AAAAAAAAAA INDIEAPPDEVELOPER
AT OIS SOftwa e ©2016-19 Jeff Drobman

Assembly Level

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

INTRO

Instruction Set Groups

DR JEFF

&5 soFTwaARE
INDIEAPPDEVELOPER
©2016-19 Jeff Drobman

Computation

“* ALU
= ADD
= SUB
= AND
= OR
= XOR
= NOT

s MULT [opt]
** DIV (rare)
s BIT
= SET
= CLR
= TEST
s SHIFT
= SHIFT
= ROTATE

Memory

*** Reg-Mem
= LOAD
= STORE
= MOV
** Mem-Mem
= MOV
% Stack
= PUSH
= POP

Program Control

“* JUMP
= JUMP/GOTO
¢+ BRANCH

= BRA
= BRCC

s CALL
= CALL/CALR

= RET/RFI/RETFIE

“* NOP

System Control

** Reset
= RESET
*** Power
= SLEEP/HALT

/O

*1/0
= N
= OUT

s Mem Mapped
= MOV PORT

5 DR JEFF

CSUN 22| soFTwaRE
CALIFORNIA l ' INDIE APPDEVELOPER
STATE UNIVERSITY A L & IVI OV E ©2016-19 Jeff Drobman

INTRO PIC 18 MCU —

ADD Sets all flags

ADDLW <data>;Add W to Literal <data> 2> W (only)
ADDWF(C) <addr>, W/F ;Add W to F (Data RAM) > W or F

MOVE Sets NO flags (1 exception®)

MOVLW <data> ;Load Literal <data> 2> W

MOVF* <addr>, W/F ;Load F at <addr> 2> W or F (same location; sets N, Z)
MOVWEF <addr> ;Store W = F at <addr>

MOVFF <addrl>,<addr2>;Move F1 - F2 in DataRAM (different location)

MULTIPLY Sets NO flags

MULLW ;Multiply W by Literal <data> - PROD [H,L]
MULWF ;Multiply W by F at <addr> = PROD [H, L]
MOVFF PRODL ,<addr> ;Store PRODL* - F at <addr>
MOVFF PRODH,<addr> ;Store PRODH* - F at <addr>

*SFR

CSUN] B8 soFrware
Addressing Modes ceo i
PIC 18 MCU —

s Direct (in instruction) MOVF/WF <addr>[8]

JUMP long-addr [21], BRA offset [+-7]

**Immediate (Literal Data) MOV/ADDLW k [-128 to +127]

** Indirect (Register indirect, uses FSR)

= LFSR n,<addr> [12-bit] (n=0, 1, 2)
= MOVF/WF INDFn
= CLRF/MOVF POSTINCh/POSTDECh/PREINCn

** Indexed (Base Register FSR + Index Register W)

= CLRF/MOVF PLUSWNn
= |INCF <addr>,F ;increment F -or-
= ADDLW 0x01 ;increment W

CSUN == SOFTWARE

° ° °
CALIFORNIA INDIE APPDEVELOPER
STATE UNIVERSITY | | I p y I V I e ©2016-19 Jeff Drobman
NORTHRIDGE

INTRO
MULTIPLY
¢ Unsigned only
¢ First convert negative numbers (2sC) — NEG op
s Compute result sign: 0 if both signs same, 1 else (not=)
s Complement result if sign is negative — NEG op
s Other MPUs use signed multiply (2sC) via “Booth’s Algorithm”
DIVIDE

** No hardware, no instruction (a few new models have a hardware divide)
¢ Create subroutine (may find ones in asm library)
s Compute
= Long division
= Non-restoring division
= |terative subtraction (very slow)
% Use tricks
= Divide by 2 or any 2": right SHIFT by n
= Divide by 10: convert to BCD, then right SHIFT by 4 (reconvert to binary)
= Divide by 5: divide by 10, then multiply by 2 (by shifting after conv. Bin)

